Energy News
WATER WORLD
This salty gel could harvest water from desert air
MIT engineers have synthesized a superabsorbent material that can soak up a record amount of moisture from the air, even in desert-like conditions. Pictured are the hydrogel discs swollen in water.
This salty gel could harvest water from desert air
by Jennifer Chu for MIT News
Boston MA (SPX) Jun 16, 2023

MIT engineers have synthesized a superabsorbent material that can soak up a record amount of moisture from the air, even in desert-like conditions.

As the material absorbs water vapor, it can swell to make room for more moisture. Even in very dry conditions, with 30 percent relative humidity, the material can pull vapor from the air and hold in the moisture without leaking. The water could then be heated and condensed, then collected as ultrapure water.

The transparent, rubbery material is made from hydrogel, a naturally absorbent material that is also used in disposable diapers. The team enhanced the hydrogel's absorbency by infusing it with lithium chloride - a type of salt that is known to be a powerful dessicant.

The researchers found they could infuse the hydrogel with more salt than was possible in previous studies. As a result, they observed that the salt-loaded gel absorbed and retained an unprecedented amount of moisture, across a range of humidity levels, including very dry conditions that have limited other material designs.

If it can be made quickly, and at large scale, the superabsorbent gel could be used as a passive water harvester, particularly in the desert and drought-prone regions, where the material could continuously absorb vapor, that could then be condensed into drinking water. The researchers also envision that the material could be fit onto air conditioning units as an energy-saving, dehumidifying element.

"We've been application-agnostic, in the sense that we mostly focus on the fundamental properties of the material," says Carlos Diaz-Marin, a mechanical engineering graduate student and member of the Device Research Lab at MIT. "But now we are exploring widely different problems like how to make air conditioning more efficient and how you can harvest water. This material, because of its low cost and high performance, has so much potential."

Diaz-Marin and his colleagues have published their results in a paper appearing in Advanced Materials. The study's MIT co-authors are Gustav Graeber, Leon Gaugler, Yang Zhong, Bachir El Fil, Xinyue Liu, and Evelyn Wang.

"Best of both worlds"
In MIT's Device Research Lab, researchers are designing novel materials to solve the world's energy and water challenges. In looking for materials that can help to harvest water from the air, the team zeroed in on hydrogels - slippery, stretchy gels that are mostly made from water and a bit of cross-linked polymer. Hydrogels have been used for years as absorbent material in diapers because they can swell and soak up a large amount of water when it comes in contact with the material.

"Our question was, how can we make this work just as well to absorb vapor from the air?" Diaz-Marin says.

He and his colleagues dug through the literature and found that others had experimented with mixing hydrogels with various salts. Certain salts, such as the rock salt used to melt ice, are very efficient at absorbing moisture, including water vapor. And the best among them is lithium chloride, a salt that is capable of absorbing over 10 times its own mass in moisture. Left in a pile on its own, lithium chloride could attract vapor from the air, though the moisture would only pool around the salt, with no means of retaining the absorbed water.

So, researchers have attempted to infuse the salt into hydrogel - producing a material that could both hold in moisture and swell to accommodate more water.

"It's the best of both worlds," says Graeber, who is now a principal investigator at Humboldt University in Berlin. "The hydrogel can store a lot of water, and the salt can capture a lot of vapor. So it's intuitive that you'd want to combine the two."

Time to load
But the MIT team found that others reached a limit to the amount of salt they could load into their gels. The best performing samples to date were hydrogels that were infused with 4 to 6 grams of salt per gram of polymer. These samples absorbed about 1.5 grams of vapor per gram of material in dry conditions of 30 percent relative humidity.

In most studies, researchers had previously synthesized samples by soaking hydrogels in salty water and waiting for the salt to infuse into the gels. Most experiments ended after 24 to 48 hours, as researchers found the process was too slow, and not very much salt ended up in the gels. When they tested the resulting material's ability to absorb water vapor, the samples soaked up very little, as they contained little salt to absorb the moisture in the first place.

What would happen if the material synthesis was allowed to go on, say, for days, and even weeks? Could a hydrogel absorb even more salt, if given enough time? For an answer, the MIT team carried out experiments with polyacrylamide (a common hydrogel) and lithium chloride (a superabsorbent salt). After synthesizing tubes of hydrogel through standard mixing methods, the researchers sliced the tubes into thin disks and dropped each disk into a solution of lithium chloride with a different salt concentration. They took the disks out of solution each day to weigh them and determine the amount of salt that had infused into the gels, then returned them to their solutions.

In the end, they found that, indeed, given more time, hydrogels took up more salt. After soaking in salty solution for 30 days, hydrogels incorporated up to 24, versus the previous record of 6 grams of salt per gram of polymer.

The team then put various samples of the salt-laden gels through absorption tests across a range of humidity conditions. They found that the samples could swell and absorb more moisture at all humidity levels, without leaking. Most notably, the team reports that at very dry conditions of 30 percent relative humidity, the gels captured a "record-breaking" 1.79 grams of water per gram of material.

"Any desert during the night would have that low relative humidity, so conceivably, this material could generate water in the desert," says Diaz-Marin, who is now looking for ways to speed up the material's superabsorbent properties.

"The big, unexpected surprise was that, with such a simple approach, we were able to get the highest vapor uptake reported to date," Graeber says. "Now, the main focus will be kinetics and how quickly we can get the material to uptake water. That will allow you to cycle this material very quickly, so that instead of recovering water once a day, you could harvest water maybe 24 times a day."

This research was supported, in part, by the U.S. Office of Energy Efficiency and Renewable Energy and the Swiss National Science Foundation.

Research Report:"Extreme Water Uptake of Hygroscopic Hydrogels Through Maximized Swelling-Induced Salt Loading"

Related Links
Department of Mechanical Engineering
Water News - Science, Technology and Politics

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
WATER WORLD
Space rock holds clues as to how Earth got its water
Tucson AZ (SPX) Jun 14, 2023
Sodium chloride, better known as table salt, isn't exactly the type of mineral that captures the imagination of scientists. However, a smattering of tiny salt crystals discovered in a sample from an asteroid has researchers at the University of Arizona Lunar and Planetary Laboratory excited, because these crystals can only have formed in the presence of liquid water. Even more intriguing, according to the research team, is the fact that the sample comes from an S-type asteroid, a category known to ... read more

WATER WORLD
New Space companies join Copernicus

Satellogic earth observation constellation continues expansion with SpaceX Transporter-8 Mission

Innovation and investment propel Earth Observation industry to new heights

Muon Space satellite test paves way for climate constellation

WATER WORLD
LEO PNT satellite signal simulator debuts at JNC 2023 conference

Northrop Grumman to produce new maritime navigation sensor for US Navy

Galileo Second Generation enters full development phase

Royal navy tests quantum sensor for future navigation systems

WATER WORLD
Latin America bank eyes finance 'umbrella' role for Amazon rainforest

Green growth in Amazon would bring Brazil billions: study

With bows and spears, Indigenous 'warriors' defend the Amazon

Brazilian Amazon deforestation falls 31% under Lula

WATER WORLD
Carbon mitigation payments can make bioenergy crops more appealing for farmers

In Iowa, Asa Hutchinson touts measured approach to green energy transition

Clean, sustainable fuels made 'from thin air' and plastic waste

EU probes alleged fraudulent biofuel from China

WATER WORLD
Researchers develop a new source of quantum light

Climate goals need clean energy surge in Global South: IEA

Launch of next generation photovoltaics lab

Boric acid-anchoring hole-selective contact for perovskite solar cells

WATER WORLD
New transmission line to carry wind energy electricity from Wyoming to Nevada

Brazil faces dilemma: endangered macaw vs. wind farm

Spire to provide TrueOcean with weather forecasts for offshore wind farm development

Sweden greenlights two offshore windpower farms

WATER WORLD
China confirms 53 killed in February mine collapse

UK keeps coal fired up despite climate goals

Greenpeace slams UK grid operator over coal decision

'Black city': Polish port Gdansk chokes on coal dust

WATER WORLD
Germany laments question-free Chinese press conference

Three convicted of seeking to force US citizens to go to China

China jails human rights lawyer for state subversion

Hong Kong, China step up security on Tiananmen crackdown anniversary

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.