Subscribe free to our newsletters via your
. Farming News .




FARM NEWS
Sequencing hundreds of nuclear genes in the sunflower family now possible
by Staff Writers
Washington DC (SPX) Feb 25, 2014


The researchers tested the efficacy of the probes and overall workflow using 14 species from the family (and one from its closest relative, Calyceraceae). The species selected span the phylogenetic breadth of the family, allowing the researchers to assess the utility of the method at broad taxonomic levels. Several closely related species (from the tribe Heliantheae) were also included to assess the usefulness of the method for shallow phylogenetic studies within the Compositae.

Advances in DNA sequencing technologies have enormous potential for the plant sciences. With genome-scale data sets obtained from these new technologies, researchers are able to greatly improve our understanding of evolutionary relationships, which are key to applications including plant breeding and physiology.

Studies of evolutionary (or phylogenetic) relationships among different plant species have traditionally relied on analyses of a limited number of genes, mostly from the chloroplast genome. Such studies often fail to fully or accurately resolve phylogenetic relationships, given the limited amount of data used.

New methods of DNA sequencing have made it possible for researchers to sequence hundreds to thousands of specific nuclear genes, greatly facilitating studies of phylogenetic relationships. However, despite the great potential of this approach, termed "target sequence capture," few researchers have developed protocols to sequence numerous nuclear genes for plant phylogenetic studies.

Researchers at the University of Memphis, the Smithsonian Institution, the University of Georgia, and other institutions have designed an efficient approach for sequencing hundreds of nuclear genes across members of the Compositae (the sunflower family). The Compositae are one of the largest families of flowering plants, containing around 25,000 species and numerous economically important crop plants, such as lettuce, sunflower, and artichoke, as well as numerous ornamentals.

The new protocol (available for free viewing in the February issue of Applications in Plant Sciences) will allow researchers to better-resolve phylogenetic relationships at both deep and shallow levels within the family, providing an excellent framework for addressing evolutionary questions about the family. Previous phylogenetic studies of the family, based on up to 10 chloroplast genes, had failed to resolve certain key relationships, limiting inferences of morphological evolution.

According to Jennifer Mandel, assistant professor in the Department of Biological Sciences at University of Memphis and lead author of the paper, the new approach is an improvement on traditional, PCR-based sequencing strategies, which have generally focused on chloroplast genes or a handful of nuclear genes. "Our method samples the genome much more widely, while avoiding the repetitive regions that make many plant genomes so difficult to assemble," says Mandel.

The protocol employs custom-designed probes that can hybridize with and "capture" 1061 nuclear genes from DNA samples of sunflower species. The captured genes can then be sequenced on the Illumina HiSeq or a similar next-generation sequencing platform, allowing tremendous amounts of data to be recovered for phylogenetic analysis.

The researchers also developed a bioinformatic and phylogenetic workflow for processing and analyzing the resulting sequence data. The workflow assembles the genes from the millions of reads generated from the sequencing instrument and then assesses all of the recovered genes for orthology (i.e., for their ability to reflect speciation events and, therefore, to accurately reconstruct phylogenetic relationships). The genes that pass the orthology test are then used for large-scale phylogenetic analyses.

The researchers tested the efficacy of the probes and overall workflow using 14 species from the family (and one from its closest relative, Calyceraceae). The species selected span the phylogenetic breadth of the family, allowing the researchers to assess the utility of the method at broad taxonomic levels. Several closely related species (from the tribe Heliantheae) were also included to assess the usefulness of the method for shallow phylogenetic studies within the Compositae.

The researchers were able to successfully recover a large portion of the 1061 target genes across all the species included, and around 700 of these genes were determined to be orthologous and thus suitable for phylogenetic analysis. Using these orthologous genes, they were able to generate well-resolved phylogenetic trees consistent with known relationships in the family, demonstrating the successfulness of this approach for phylogenetic studies of the Compositae.

Although the probe set was developed specifically for research on the sunflower family, the researchers note that the overall workflow can be applied to any taxonomic group of interest. Therefore, this protocol could serve as a model for phylogenetic investigations of other major plant groups, as well as an excellent tool for studies of the Compositae.

"Novel probes can be designed as long as transcriptomic data exists or can be gathered for the taxa of interest," says Mandel.

Jennifer R. Mandel, Rebecca B Dikow, Vicki A. Funk, Rishi R. Masalia, S. Evan Staton, Alex Kozik, Richard W. Michelmore, Loren H. Rieseberg, and John M. Burke. 2014. A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Applications in Plant Sciences 2(2): 1300085. doi:10.3732/apps.1300085

.


Related Links
American Journal of Botany
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Roots to Shoots: Hormone transport in plants deciphered
Long Island NY (SPX) Feb 25, 2014
Plant growth is orchestrated by a spectrum of signals from hormones within a plant. A major group of plant hormones called cytokinins originate in the roots of plants, and their journey to growth areas on the stem and in leaves stimulates plant development. Though these phytohormones have been identified in the past, the molecular mechanism responsible for their transportation within plants was ... read more


FARM NEWS
Sentinel-1 spreads its wings

Sharp-Eyed Proba-V Works Around The Clock

NASA Satellites See Arctic Surface Darkening Faster

NASA Data Find Some Hope for Water in Aral Sea Basin

FARM NEWS
Russia to deploy up to 7 Glonass ground stations outside of national territory in 2014

Northrop Grumman Awarded U.S. Military Contract for Navigation Systems

Galileo works, and works well

Sochi Olympic transport controlled from space using GLONASS satellite

FARM NEWS
UNEP launches global platform to protect forests

Forest model predicts canopy competition

Massive logging leaves deep scars in Eastern Europe

Google-backed database steps up fight on deforestation

FARM NEWS
Team converts sugarcane to a cold-tolerant, oil-producing crop

Pond-dwelling powerhouse's genome points to its biofuel potential

Sustainable use of energy wood resources shows potential in North-West Russia

Italian farmers hail coming of biomethane production incentives

FARM NEWS
SunEdison Interconnects Solar Power Plant For Davis-Monathan AFB

Ailing German PV panel maker SolarWorld completes restructuring

JA Solar Multi-Si Solar Cells Surpass 19% Conversion Efficiency

Power Module Design for an Ultra Efficient Three-Level Utility Grid Solar Inverter

FARM NEWS
Czech wind power generation up 'disappointing' 15 percent in 2013

Wind farms can tame hurricanes: scientists

Draft report finds no reliable link between wind farms and health effects

New research blows away claims that aging wind farms are a bad investment

FARM NEWS
Societal Benefits of Fossil Energy to be at Least 50 Times Greater than Perceived Costs of Carbon

Goldman Sachs pulls out from Pacific coal export project

Colombia stops Drummond coal shipments over environmental row

China coal mine accidents kill 1,049 in 2013: govt

FARM NEWS
Hong Kong editor in press freedom row hacked with cleaver

Wife of jailed Chinese Nobel winner in hospital

Questions over recovery of China's lost marbles

Ai Weiwei brushes off painter's smashing of $1m vase




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.