Energy News  
FARM NEWS
Scientists grow plants in lunar soil
by Staff Writers
Gainsville FL (SPX) May 13, 2022

By day 16, there were clear physical differences between plants grown in the volcanic ash lunar simulant, left, compared with those grown in the lunar soil, right.

In the early days of the space age, the Apollo astronauts took part in a visionary plan: Bring samples of the lunar surface material, known as regolith, back to Earth where they could be studied with state-of-the-art equipment and saved for future research not yet imagined.

Fifty years later, at the dawn of the Artemis era and the next astronaut return to the Moon, three of those samples have been used to successfully grow plants. For the first time ever, researchers have grown the hardy and well-studied Arabidopsis thaliana in the nutrient-poor lunar regolith.

"This research is critical to NASA's long-term human exploration goals as we'll need to use resources found on the Moon and Mars to develop food sources for future astronauts living and operating in deep space," said NASA Administrator Bill Nelson. "This fundamental plant growth research is also a key example of how NASA is working to unlock agricultural innovations that could help us understand how plants might overcome stressful conditions in food-scarce areas here on Earth."

Scientists at the University of Florida have made a breakthrough discovery - decades in the making - that could both enable space exploration and benefit humanity. "Here we are, 50 years later, completing experiments that were started back in the Apollo labs," said Robert Ferl, a professor in the Horticultural Sciences department at the University of Florida, Gainesville, and a communicating author on a paper published on May 12, 2022, in Communications Biology. "We first asked the question of whether plants can grow in regolith. And second, how might that one day help humans have an extended stay on the Moon."

The answer to the first question is a resounding yes. Plants can grow in lunar regolith. They were not as robust as plants grown in Earth soil, or even as those in the control group grown in a lunar simulant made from volcanic ash, but they did indeed grow. And by studying how the plants responded in the lunar samples, the team hopes to go on to answer the second question as well, paving the way for future astronauts to someday grow more nutrient-rich plants on the Moon and thrive in deep space.

To Boldly Go, We Must Boldly Grow
"To explore further and to learn about the solar system we live in, we need to take advantage of what's on the Moon, so we don't have to take all of it with us," said Jacob Bleacher, the Chief Exploration Scientist supporting NASA's Artemis program at NASA Headquarters in Washington.

Bleacher points out that this is also why NASA is sending robotic missions to the Moon's South Pole where it's believed there may be water that can be used by future astronauts. "What's more, growing plants is the kind of thing we'll study when we go. So, these studies on the ground lay the path to expand that research by the next humans on the Moon."

Arabidopsis thaliana, native to Eurasia and Africa, is a relative of mustard greens and other cruciferous vegetables like broccoli, cauliflower, and Brussels sprouts. It also plays a key role for scientists: due to its small size and ease of growth, it is one of the most studied plants in the world, used as a model organism for research into all areas of plant biology. As such, scientists already know what its genes look like, how it behaves in different circumstances, even how it grows in space.

Working with Teaspoon-sized Samples
To grow the Arabidopsis, the team used samples collected on the Apollo 11, 12, and 17 missions, with only a gram of regolith allotted for each plant. The team added water and then seeds to the samples. They then put the trays into terrarium boxes in a clean room. A nutrient solution was added daily.

"After two days, they started to sprout!" said Anna-Lisa Paul, who is also a professor in Horticultural Sciences at the University of Florida, and who is first author on the paper. "Everything sprouted. I can't tell you how astonished we were! Every plant - whether in a lunar sample or in a control - looked the same up until about day six."

After day six, however, it was clear that the plants were not as robust as the control group plants growing in volcanic ash, and the plants were growing differently depending on which type of sample they were in. The plants grew more slowly and had stunted roots; additionally, some had stunted leaves and sported reddish pigmentation.

After 20 days, just before the plants started to flower, the team harvested the plants, ground them up, and studied the RNA. In a biological system, genes are decoded in multiple steps. First, the genes, or DNA, are transcribed into RNA. Then the RNA is translated into a protein sequence.

These proteins are responsible for carrying out many of the biological processes in a living organism. Sequencing the RNA revealed the patterns of genes that were expressed, which showed that the plants were indeed under stress and had reacted the way researchers have seen Arabidopsis respond to growth in other harsh environments, such as when soil has too much salt or heavy metals.

Additionally, the plants reacted differently depending on which sample - each collected from different areas on the Moon - was used. Plants grown in the Apollo 11 samples were not as robust as the other two sets. Nonetheless, the plants did grow.

Sowing the Seeds for Future Research
This research opens the door not only to someday growing plants in habitats on the Moon, but to a wide range of additional questions. Can understanding which genes plants need to adjust to growing in regolith help us understand how to reduce the stressful nature of lunar soil?

Are materials from different areas of the Moon more conducive to growing plants than others? Could studying lunar regolith help us understand more about the Mars regolith and potentially growing plants in that material as well? All of these are questions that the team hopes to study next, in support of the future astronauts traveling to the Moon.

"Not only is it pleasing for us to have plants around us, especially as we venture to new destinations in space, but they could provide supplemental nutrition to our diets and enable future human exploration," said Sharmila Bhattacharya, program scientist with NASA's Biological and Physical Sciences (BPS) Division. "Plants are what enable us to be explorers."

This research is part of the Apollo Next Generation Sample Analysis Program, or ANGSA, an effort to study the samples returned from the Apollo Program in advance of the upcoming Artemis missions to the Moon's South Pole. BPS helped support this work, which also supports other fundamental plant research, including Veggie, PONDS, and Advanced Plant Habitat.


Related Links
Biological and Physical Sciences Division
Apollo Next Generation Sample Analysis Program
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FARM NEWS
Between searing drought and Ukraine war, Iraq watchful over wheat
Jaliha, Iraq (AFP) May 8, 2022
Iraqi farmer Kamel Hamed looks at the golden ears of wheat waving in the wind, unable to hide his anguish over the baking heat that is decimating his harvest. "The drought is unbelievable," said the 53-year-old in a white dishdasha robe and keffiyeh head covering at his farm in Jaliha village of central Diwaniya province. "Even the well water can't be used, it's salt water." Searing heat and a lack of rain were already threatening his harvest. Then came Russia's invasion of Ukraine in Februa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
Recommendation algorithms that power Amazon, Netflix can improve satellite imagery, too

Satellogic and UP42 team up to offer rapid monitoring capabilities

Earth from Space: Arc de Triomphe

NASA selects firms for NOAA Atmospheric Composition Instrument study

FARM NEWS
EUSPA celebrates its first 365 days of new Galileo operations

Xona passes critical testing milestone as private GNSS readies for launch

China Satellite Navigation Conference to highlight digital economy, intelligent navigation

406 Day: how Galileo helps save lives

FARM NEWS
Why trees aren't a climate change cure-all

Ability of forests to sequester carbon may become more limited

What we're still learning about how trees grow

Brazil firms, NGOs urge Biden to create forest fund

FARM NEWS
Ultrathin fuel cell uses the body's own sugar to generate electricity

Mystery solved about active phase in catalytic CO2 reduction to methanol

Using human energy to heat buildings will pay off

Dung power: India taps new energy cash cow

FARM NEWS
Scientists create reliable and renewable biological photovoltaic cell

Highly efficient large-area perovskite LEDs for next-gen display technology

Towards more efficient, non-toxic, and flexible thin-film solar cells

Citizen science for the advancement of solar energy

FARM NEWS
Transport drones for offshore wind farms

Lack of marshaling ports hindering offshore wind industry

Favourable breezes boost Spain's wind power sector

Brazil to hold first offshore wind tender by October: official

FARM NEWS
India relaxes environment rules for coal mines, citing heatwave

India to reopen abandoned coal mines as heatwave hits supply

China cuts coal import taxes to zero to ensure energy supply

Coal still top threat to global climate goals: report

FARM NEWS
China defends Hong Kong cardinal's arrest as Western alarm grows

US, China congratulate Marcos for Philippine election win

Chinese developer Sunac misses $29.5m payment as defaults rumble on

China defends Hong Kong cardinal's arrest as Western alarm grows









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.