Energy News
FARM NEWS
MIT researchers remotely map crops, field by field
stock illustration only
MIT researchers remotely map crops, field by field
by Jennifer Chu | MIT News
Boston MA (SPX) Feb 21, 2024

Crop maps help scientists and policymakers track global food supplies and estimate how they might shift with climate change and growing populations. But getting accurate maps of the types of crops that are grown from farm to farm often requires on-the-ground surveys that only a handful of countries have the resources to maintain.

Now, MIT engineers have developed a method to quickly and accurately label and map crop types without requiring in-person assessments of every single farm. The team's method uses a combination of Google Street View images, machine learning, and satellite data to automatically determine the crops grown throughout a region, from one fraction of an acre to the next.

The researchers used the technique to automatically generate the first nationwide crop map of Thailand - a smallholder country where small, independent farms make up the predominant form of agriculture. The team created a border-to-border map of Thailand's four major crops - rice, cassava, sugarcane, and maize - and determined which of the four types was grown, at every 10 meters, and without gaps, across the entire country. The resulting map achieved an accuracy of 93 percent, which the researchers say is comparable to on-the-ground mapping efforts in high-income, big-farm countries.

The team is applying their mapping technique to other countries such as India, where small farms sustain most of the population but the type of crops grown from farm to farm has historically been poorly recorded.

"It's a longstanding gap in knowledge about what is grown around the world," says Sherrie Wang, the d'Arbeloff Career Development Assistant Professor in MIT's Department of Mechanical Engineering, and the Institute for Data, Systems, and Society (IDSS). "The final goal is to understand agricultural outcomes like yield, and how to farm more sustainably. One of the key preliminary steps is to map what is even being grown - the more granularly you can map, the more questions you can answer."

Wang, along with MIT graduate student Jordi Laguarta Soler and Thomas Friedel of the agtech company PEAT GmbH, will present a paper detailing their mapping method later this month at the AAAI Conference on Artificial Intelligence.

Ground truth
Smallholder farms are often run by a single family or farmer, who subsist on the crops and livestock that they raise. It's estimated that smallholder farms support two-thirds of the world's rural population and produce 80 percent of the world's food. Keeping tabs on what is grown and where is essential to tracking and forecasting food supplies around the world. But the majority of these small farms are in low to middle-income countries, where few resources are devoted to keeping track of individual farms' crop types and yields.

Crop mapping efforts are mainly carried out in high-income regions such as the United States and Europe, where government agricultural agencies oversee crop surveys and send assessors to farms to label crops from field to field. These "ground truth" labels are then fed into machine-learning models that make connections between the ground labels of actual crops and satellite signals of the same fields. They then label and map wider swaths of farmland that assessors don't cover but that satellites automatically do.

"What's lacking in low- and middle-income countries is this ground label that we can associate with satellite signals," Laguarta Soler says. "Getting these ground truths to train a model in the first place has been limited in most of the world."

The team realized that, while many developing countries do not have the resources to maintain crop surveys, they could potentially use another source of ground data: roadside imagery, captured by services such as Google Street View and Mapillary, which send cars throughout a region to take continuous 360-degree images with dashcams and rooftop cameras.

In recent years, such services have been able to access low- and middle-income countries. While the goal of these services is not specifically to capture images of crops, the MIT team saw that they could search the roadside images to identify crops.

Cropped image
In their new study, the researchers worked with Google Street View (GSV) images taken throughout Thailand - a country that the service has recently imaged fairly thoroughly, and which consists predominantly of smallholder farms.

Starting with over 200,000 GSV images randomly sampled across Thailand, the team filtered out images that depicted buildings, trees, and general vegetation. About 81,000 images were crop-related. They set aside 2,000 of these, which they sent to an agronomist, who determined and labeled each crop type by eye. They then trained a convolutional neural network to automatically generate crop labels for the other 79,000 images, using various training methods, including iNaturalist - a web-based crowdsourced biodiversity database, and GPT-4V, a "multimodal large language model" that enables a user to input an image and ask the model to identify what the image is depicting. For each of the 81,000 images, the model generated a label of one of four crops that the image was likely depicting - rice, maize, sugarcane, or cassava.

The researchers then paired each labeled image with the corresponding satellite data taken of the same location throughout a single growing season. These satellite data include measurements across multiple wavelengths, such as a location's greenness and its reflectivity (which can be a sign of water).

"Each type of crop has a certain signature across these different bands, which changes throughout a growing season," Laguarta Soler notes.

The team trained a second model to make associations between a location's satellite data and its corresponding crop label. They then used this model to process satellite data taken of the rest of the country, where crop labels were not generated or available. From the associations that the model learned, it then assigned crop labels across Thailand, generating a country-wide map of crop types, at a resolution of 10 square meters.

This first-of-its-kind crop map included locations corresponding to the 2,000 GSV images that the researchers originally set aside, that were labeled by arborists. These human-labeled images were used to validate the map's labels, and when the team looked to see whether the map's labels matched the expert, "gold standard" labels, it did so 93 percent of the time.

"In the U.S., we're also looking at over 90 percent accuracy, whereas with previous work in India, we've only seen 75 percent because ground labels are limited," Wang says. "Now we can create these labels in a cheap and automated way."

The researchers are moving to map crops across India, where roadside images via Google Street View and other services have recently become available.

"There are over 150 million smallholder farmers in India," Wang says. "India is covered in agriculture, almost wall-to-wall farms, but very small farms, and historically it's been very difficult to create maps of India because there are very sparse ground labels."

The team is working to generate crop maps in India, which could be used to inform policies having to do with assessing and bolstering yields, as global temperatures and populations rise.

"What would be interesting would be to create these maps over time," Wang says. "Then you could start to see trends, and we can try to relate those things to anything like changes in climate and policies."

Research Report:"Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types"

Related Links
Institute for Data, Systems, and Society
Farming Today - Suppliers and Technology

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
FARM NEWS
Natural pesticides gain ground in 'agri-tox' capital Brazil
Montividiu, Brazil (AFP) Feb 19, 2024
Inspecting a thriving green field, Brazilian farmer Adriano Cruvinel is beaming: Using a fraction of the chemical products he used to, he is growing even more soy, thanks to natural pesticides. Agricultural powerhouse Brazil may be the world leader in chemical pesticide use, but Cruvinel is part of a growing trend of farmers turning to natural products known as "biopesticides." "Our soy is doing great," says the 36-year-old agricultural engineer, giving a tour of his 1,400-hectare (nearly 3,500- ... read more

FARM NEWS
NUVIEW Acquires AI Firm Astraea to transforming geospatial intelligence

Stitch3D is powering a new wave of 3D data collaboration

ASIA-AQ Mission: A Multidimensional Approach to Understanding Air Pollution

Esri Unveils Landsat Explorer: A New Era in Satellite Imagery Analysis

FARM NEWS
Galileo, now fit for aviation

APG Launches NaviGuard: A New GPS Anomaly Detection App Enhancing Aviation Safety

Korea's satnav system certified by national authorities and enters operational service

Pre-Industrial travel routes and times uncovered through innovative digital project

FARM NEWS
A century of reforestation helped keep the eastern US cool

New mayor hopes trees will cool Athens down

Amazon rainforest may face tipping point by 2050: study

China-funded nickel hub stoking deforestation on Indonesia island: report

FARM NEWS
Watching the enzymes that convert plant fiber into simple sugars

Greenhouse gas repurposed in University of Auckland experiments

Inexpensive, carbon-neutral biofuels are finally possible

Microbial division of labor produces higher biofuel yields

FARM NEWS
Russian invasion catalyst for renewables in Ukraine: minister

Activist fund urges BP to hit brakes on green energy

EagleView's Geospatial Data Transforms Solar Industry with Rapid, Detailed Bidding

Revolution in low-light imaging with integrated photovoltaic and photodetector organic device

FARM NEWS
Wind-powered Dutch ship sets sail for greener future

Leaf-shaped generators create electricity from the wind and rain

European offshore wind enjoys record year in 2023

Danish firm to build huge wind farm off UK

FARM NEWS
Polluted paradise: Chile town waits for cleanup as coal shuts off

King coal set to lose crown for electricity production: IEA

China mining accident death toll rises to 13

At least 10 dead in China mining accident: state media

FARM NEWS
Trial starts for 14 accused of Hong Kong protest bomb plot

Australian writer will not appeal suspended China death sentence

Hong Kong to allow recognition of some China court rulings

Terminally ill Hong Kong activist jailed again for sedition

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.