LED lighting in greenhouses helps but standards are needed by Staff Writers New Brunswick NJ (SPX) Jan 13, 2020
While LED lighting can enhance plant growth in greenhouses, standards are needed to determine the optimal intensity and colors of light, according to Rutgers research that could help improve the energy efficiency of horticultural lighting products. Many lighting companies market their LED (light-emitting diode) products with claims of delivering an optimal "light recipe" that often consists of a combination of wavelengths and color ratios, such as a 4-to-1 red to blue ratio on the spectrum (colors of a rainbow). Plant scientists often use this information to evaluate the potential effects of lamps on plant growth and development. But standardized procedures on how to calculate these ratios are lacking, according to a study soon to be published in the journal Acta Horticulturae. "The more efficient supplemental lighting sources are, the less electric power growers need to finish their crops," said senior author A.J. Both, a professor and extension specialist in controlled environment engineering in the Department of Environmental Sciences in the School of Environmental and Biological Sciences at Rutgers University-New Brunswick. "We hope to help make indoor crop production more sustainable and affordable." Increased energy efficiency can have a big impact on the bottom line, and information about new crop lighting strategies will help the burgeoning indoor farming industry, Both said. In greenhouses and controlled environments, electric lamps are used to supplement sunlight and extend lighting times to produce horticultural crops, such as vegetables, flowers and herbs, according to a previous study led by Both. Recent advances in energy-efficient LED technology provide the horticultural industry with multiple lighting options. But growers can't easily compare technologies and LED options because of a lack of independent data on how lamps perform. That study led to a proposed standardized product label allowing for comparisons of lamps across manufacturers. Both and colleagues continue to focus on independently assessing performance metrics such as power consumption, efficiency, light intensity and the light distribution pattern and relaying that information to commercial growers. Recent advancements have provided opportunities to precisely control the light from LED lamps and study their impacts on plant growth and development, according to Both's research. Both and his team work closely with plant scientists who study the impact of light on plants grown for food or ornamental crops. The new study recommends using a spectroradiometer, an instrument that measures light output across a specific range of wavelengths. Using such an instrument, various light ratios can be calculated. The researchers reported substantial differences in light ratios comparing sunlight with common lamps, including LED, high-pressure sodium, incandescent and fluorescent lamps used for plant lighting. The researchers hope that their work will contribute to the development of standard definitions for specific wavebands (ranges of wavelengths) that are important for plant growth and development. The lead author of the new study is Timothy Shelford, a part-time research specialist at Rutgers who also works at Cornell University. Claude Wallace, a Rutgers graduate and part-time employee, also contributed to the study.
Research team traces evolution of the domesticated tomato Amherst MA (SPX) Jan 13, 2020 In a new paper, a team of evolutionary biologists and geneticists led by senior author associate professor Ana Caicedo, with first author Hamid Razifard at the University of Massachusetts Amherst, and others, report that they have identified missing links in the tomato's evolution from a wild blueberry-sized fruit in South America to the larger modern tomato of today. The missing link that deserves more attention than it has gotten to date, they say, is one of a number of intermediate variants be ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |