How crops can better survive floods by Staff Writers Freiburg im Breisgau, Germany (SPX) Jun 13, 2022
Extreme weather phenomena are on the rise worldwide, including frequent droughts and fires. Floods are also a clear consequence of climate change. For agriculture, a flooded field means major losses: about 15 percent of global crop losses are due to flooding. As part of a collaboration between Freiburg, Utrecht in the Netherlands, and other institutes, Junior Professor Dr. Sjon Hartman from the Cluster of Excellence CIBSS - Centre for Integrative Biological Signalling Studies at the University of Freiburg, has now discovered that a signaling molecule can make plants more resistant to flooding. The gaseous plant hormone ethylene causes the plant to switch on a kind of molecular emergency power system that helps it survive the lack of oxygen during flooding. The team had previously demonstrated that ethylene sends a signal to the plant that it is underwater. Pretreating the experimental plants with the hormone improved their chances of survival. The results, which appeared in the journal Plant Physiology, should help to combat waterlogging and flooding in agriculture and, for example, to develop resistant plant varieties.
Tracking the adaptations to wet conditions The Arabidopsis thaliana, a model organism for plant research, can be used to study the genes and proteins that make up this adaptation. "Plants notice that they are surrounded by water because the gas ethylene, which all plant cells produce, can no longer escape into the air," Hartman continues. The researchers showed this in previous studies at Utrecht University. Receptors throughout the plant subsequently respond to increased concentrations of the hormone.
Simulate flooding with oxygen deprivation In addition, the ethylene caused the cells to be better protected against harmful oxygen radicals that accumulate in oxygen-deprived plants. This was revealed by analyses of gene activity and protein composition of the cells. "Taken together, these rearrangements that ethylene triggers improve plant survival during and after flooding," Hartman summarizes. "As we better understand these signaling pathways, we can learn to make crops more resilient to flooding to combat climate change."
Research Report:Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration
Discovery paves way for more sustainable crop cultivation methods New Brunswick NJ (SPX) Jun 13, 2022 Rutgers researchers have discovered that nitrogen-fixing bacteria hidden within leaf cells could lead to more efficient and sustainable methods of crop cultivation. The study, recently published in the journal Biology, investigated how bacteria in non-photosynthetic leaf cells of seed plants can naturally provide nitrogen to plants. Currently, inorganic nitrogen fertilizers, such as ammonia or nitrate, are commonly applied to soils, damaging soils, and causing nitrogen runoff that contaminates str ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |