Discovery paves way for more sustainable crop cultivation methods by Staff Writers New Brunswick NJ (SPX) Jun 13, 2022
Rutgers researchers have discovered that nitrogen-fixing bacteria hidden within leaf cells could lead to more efficient and sustainable methods of crop cultivation. The study, recently published in the journal Biology, investigated how bacteria in non-photosynthetic leaf cells of seed plants can naturally provide nitrogen to plants. Currently, inorganic nitrogen fertilizers, such as ammonia or nitrate, are commonly applied to soils, damaging soils, and causing nitrogen runoff that contaminates streams, rivers, and other water bodies. "Development of new crop varieties or agricultural technologies based on rebuilding and supporting native nitrogen-fixing endosymbiosis could dramatically change how we cultivate crops," said James White, a principal investigator of the study and professor of plant biology at the School of Environmental and Biological Sciences (SEBS) at Rutgers University-New Brunswick. "This discovery will pay dividends in preservation of the environment, regeneration of agricultural soils and reduction of global warming by cutting the release of greenhouse gasses and environmental degradation that results from fertilizer runoff." Prior to this study, it was commonly understood that nitrogen-fixing symbioses were limited to roots of legumes and a few other families of plants that form root nodules containing nitrogen-fixing bacteria. But by examining more than 30 species of seed plants in 18 families of monocots and dicots, the study investigators found that bacteria in leaf cells can exchange nitrogen for plant sugars. This discovery shows how non-domesticated plants, such as wild or weed plants, grow in non-fertile soils without the addition of nitrogen fertilizers. Instead, plants harvest nitrogen from the air using intracellular bacteria that they absorb into their cells from soils and carry in seeds. The most efficient of these cryptic nitrogen-transfer endosymbiosis was seen in the glandular trichomes (also known as leaf hairs) of dicot plants like hops (Humulus lupulus) and hemp (Cannabis sativa). Glandular trichomes contain terpenoids, cannabinoids, essential oils or other antioxidants that may increase efficiency of endosymbiotic nitrogen fixation by scavenging or excluding oxygen that inhibits nitrogen fixation. White said expanding our knowledge of how plants extract nitrogen from endosymbiotic bacteria within leaves could help growers find more efficient and sustainable ways to fertilize crops. "This research shows that it may be possible to support nitrogen-fixing activities by endosymbiotic bacteria in leaves by breeding plants to preserve native endosymbiosis or by applications of microbes to plant seedlings to re-establish nitrogen-fixation endosymbiosis," he said. "Our hope is that this study will open doors to the development of new methods of crop cultivation that are more efficient and sustainable than what is currently practiced." In addition to Rutgers researchers, the study involved collaborators at the U.S. Geological Survey, University of the Sacred Heart in Puerto Rico and University of the Valley in Colombia.
Research Report:Histochemical Evidence for Nitrogen-Transfer Endosymbiosis in Non-Photosynthetic Cells of Leaves and Inflorescence Bracts of Angiosperms
Zelensky warns of food crisis, urges end to Russian blockade Singapore (AFP) June 11, 2022 Ukrainian President Volodymyr Zelensky on Saturday urged international pressure to end a Russian naval blockade of Black Sea ports that has choked off his country's grain exports, threatening a global food crisis. Before the Russian invasion, Ukraine was the world's top producer of sunflower oil and a major wheat exporter, but millions of tonnes of grain exports remain trapped due to the blockade. The United Nations and some countries are pushing for a maritime corridor to be opened up to allow ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |