Energy News  
Where Does Coastal Fish Farm Waste Go

It has been widely assumed that the effluent from pens would be benignly diluted by the sea if the pens were kept a reasonable distance from shore, said Jeffrey Koseff, a professor of civil and environmental engineering and co-director of Stanford's Woods Institute for the Environment. But early results from a new Stanford computer simulation based on sophisticated fluid dynamics show that the icky stuff from the pens will travel farther, and in higher concentrations, than had been generally assumed, Koseff said. "What we've basically debunked is the old adage that 'The solution to pollution is dilution,' " he said. "It's a lot more complicated."
by Staff Writers
Stanford CA (SPX) Feb 18, 2009
If you are a fish eater, it's likely that the salmon you had for dinner was not caught in the wild, but was instead grown in a mesh cage submerged in the open water of oceans or bays. Fish farming, a relatively inexpensive way to provide cheap protein to a growing world population, now supplies, by some estimates, 30 percent of the fish consumed by humans.

Two hundred and twenty species of finfish and shellfish are now grown in farms.

Intuitively, it seems a good idea-the more fish grown in pens, the fewer need be taken from wild stocks in the sea. But marine aquaculture can have some nasty side effects, especially when the pens are set near sensitive coastal environments.

All those fish penned up together consume massive amounts of commercial feed, some of which drifts off uneaten in the currents. And the crowded fish, naturally, defecate and urinate by the tens of thousands, creating yet another unpleasant waste stream.

The wastes can carry disease, causing damage directly. Or the phosphate and nitrates in the mix may feed an algae bloom that sucks the oxygen from the water, leaving it uninhabitable, a phenomenon long associated with fertilizer runoff.

It has been widely assumed that the effluent from pens would be benignly diluted by the sea if the pens were kept a reasonable distance from shore, said Jeffrey Koseff, a professor of civil and environmental engineering and co-director of Stanford's Woods Institute for the Environment.

But early results from a new Stanford computer simulation based on sophisticated fluid dynamics show that the icky stuff from the pens will travel farther, and in higher concentrations, than had been generally assumed, Koseff said.

"What we've basically debunked is the old adage that 'The solution to pollution is dilution,' " he said. "It's a lot more complicated."

The computer modeling (with new Stanford software that goes by the acronym SUNTANS) was conducted by Oliver Fringer, an assistant professor of civil and environmental engineering. He created a virtual coastal marine area resembling California's Monterey Bay.

Previous software, he said, has not been up to the task of accurately predicting where the unhealthy effluent from fish pens will end up, and should probably not be used by state or federal regulators when they approve locations for fish farms.

Existing software is typically derived from models that attempt to describe the drift of effluent from sewage outfall pipes, even though the substances and situations are different from fish farms. (Sewage outflow, for example, is often warmer than the ocean water.)

The fine details of modeling the flow of dissolved fish poop from a submerged cage are not as simple as they may seem. The design of the cage itself can affect the outcome.

How much of the current flows through the cage, and how much goes around? Does the moving water swirl into eddies at the edges of the pen? Even the effects of the rotation of the earth on the waste plume comes into play.

The fish farmer would prefer that currents flush out his pens frequently, but as those currents take out the garbage they might unfortunately deliver it to a mangrove ecosystem or a public beach.

On the other hand, insufficient flow through the pen can create a "dead zone" on the ocean floor as the fecal matter and uneaten food pile up beneath the fish.

Fringer is designing his software so that it can be used to asses any site-Puget Sound, perhaps-where sufficient digital mapping of the area already exists. SUNTANS comes just in time, said Stanford oceans expert Rosamond Naylor, as federal and local officials begin spelling the details of new health and environmental regulations for fish pens.

Also participating in the research was former postdoctoral researcher Subhas Karan Venayagamoorthy, now at Colorado State University.

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Stanford University
Farming Today - Suppliers and Technology



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Doomsday seed vault's stores are growing
Chicago (AFP) Feb 15, 2009
The stores of seeds in a "doomsday" vault in the Norwegian Arctic are growing as researchers rush to preserve 100,000 crop varieties from potential extinction.







  • US Petroleum Dependency Factor Of History
  • Chemists Offer New Hydrogen Purification Method
  • China Wind Systems Begins Production At New Facility
  • Green Strategies For IT Infrastructures To Save Energy

  • UN nuclear watchdog seeks spike in funds
  • Russia, Turkey close to mega energy deals: official
  • Indian radioactive metal found in Germany
  • Most Swedes want nuclear power

  • Global Warming May Delay Recovery Of Stratospheric Ozone
  • Science In The Stratosphere
  • Americans Owe Five Months Of Their Lives To Cleaner Air
  • Does Global Warming Lead To A Change In Upper Atmospheric Transport

  • Researcher: Trees make for better lives
  • Australia says wildfire damage worse than thought
  • Row in Brazil over reforestation reduction
  • Climate change threatens Lebanon's legendary cedars

  • Bioremediation To Keep Atrazine From Waterways
  • Food Counterfeiting, Contamination Outpace International Regulatory Systems
  • Where Does Coastal Fish Farm Waste Go
  • Good bacteria Can Be EZ Pass For Oral Vaccine Against Anthrax

  • China overtakes US as largest auto market: state media
  • Culture shock: Getting a Chinese driver's licence
  • Tesla shifts electric sedan site to win US government loan
  • Toyota Eco-Friendly Dealerships Lead In Environmental Construction

  • Major airlines call for climate deal to include aviation
  • Swiss aircraft firm to cut jobs in Ireland
  • Bank of China extends massive credit to state aircraft maker
  • Shanghai Airlines seeks capital injection

  • Nuclear Power In Space - Part 2
  • Nuclear Power In Space
  • Outside View: Nuclear future in space

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement