WSU findings point way to more nutritious crops by Staff Writers Pullman WA (SPX) Mar 29, 2017
Almost every calorie that we eat at one time went through the veins of a plant. If a plant's circulatory system could be rejiggered to make more nutrients available - through bigger seeds or sweeter tomatoes - the world's farmers could feed more people. Washington State University researchers have taken a major step in that direction by unveiling the way a plant's nutrients get from the leaves, where they are produced through photosynthesis, to "sinks" that can include the fruits and seeds we eat and the branches we process for biofuels. The researchers found a unique and critical structure where the nutrients are offloaded, giving science a new focal point in efforts to improve plant efficiency and productivity. "If you can increase the sink strength by 5 percent, and you get 5 percent more product, you'd be looking at a multibillion dollar market," said Michael Knoblauch, a professor in the WSU School of Biological Sciences.
Determining where nutrients land "What we eat is mostly fruits, roots and seeds, cereals and so on," said Knoblauch. "And all this stuff is not at the place of photosynthesis. It's at the place of unloading. So all the sugars and everything that is generated by photosynthesis are basically translocated to these so-called sinks. "The unloading mechanism is a very important step because it determines how much a specific sink gets," he said. "So if we are able to modify the so-called sink strength, we can basically modify what fruit or root gets more."
Videos show nutrients unloaded They discovered that the phloem unloads through convection, a combination of diffusion, the movement of sugar solute from areas of high concentration to low, and bulk flow, in which both a solute and solution are transported. Facilitating the process are plasmodesmata, pores connecting neighboring cells. They also saw for the first time unique structures called "funnel plasmodesmata." They measure only 300 nanometers across - 3/10,000ths of a millimeter and the wavelength of ultraviolet light. Despite their size, the funnel-shaped pores have 1/400th the flow resistance of an ordinary pore and can release large proteins in discrete pulses, which the researchers call "batch unloading."
Targeting sinks to draw more nutrients "It's a beautiful, elegant system," he said. "The more you pull out, the more you get. So if we are able to increase the sink strength of a specific sink of interest, then we can draw to this sink more nutrients of interest. If we want to make a tomato fruit a stronger sink by modifying phloem unloading, we draw more of the nutrients to the fruit and make more fruit product."
Aarhus, Denmark (SPX) Mar 30, 2017 Stronger legs in fast-growing broilers, reduced phosphorus emissions to the environment, improved health for undernourished populations in developing countries and better use of scarce resources - these are some of the perspectives of a unique type of wheat; a wheat with a specific ability to increase the digestibility of phosphorus and other important minerals. Scientists from the Departm ... read more Related Links Washington State University Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |