Using high-resolution satellites to measure African farm yields by Staff Writers Stanford CA (SPX) Feb 14, 2017
Stanford researchers have developed a new way to estimate crop yields from space, using high-res photos snapped by a new wave of compact satellites. The approach, detailed in the February 13 issue of the journal of the Proceedings of the National Academy of Sciences, could be used to estimate agricultural productivity and test intervention strategies in poor regions of the world where data are currently extremely scarce. "Improving agricultural productivity is going to be one of the main ways to reduce hunger and improve livelihoods in poor parts of the world," said study-coauthor Marshall Burke, an assistant professor in the department of Earth System Science at Stanford's School of Earth, Energy and Environmental Sciences. "But to improve agricultural productivity, we first have to measure it, and unfortunately this isn't done on most farms around the world." Earth-observing satellites have been around for over three decades, but most of the imagery they capture has not been high-enough resolution to visualize the very small agricultural fields typical in developing countries. Recently, however, satellites have shrunk in both size and cost while simultaneously improving in resolution, and today there are several companies competing to launch refrigerator- and shoebox-sized satellites into space that take high resolution images of the earth. "You can get lots of them up there, all capturing very small parts of the land surface at very high resolution," said study-coauthor David Lobell, an associate professor in the Department of Earth System Science. "Any one satellite doesn't give you very much information, but the constellation of them actually means that you're covering most of the world at very high resolution and at very low cost. That's something we never really had even a few years ago." In the new study, Burke and Lobell set out to test whether the images from this new wave of satellites are good enough reliably estimate crop yields. The pair focused on an area in Western Kenya where there are a lot of smallholder farmers that grow maize, or corn, on small, half-acre or one-acre lots. "This was an area where there was already a lot of existing field work," Lobell said. "It was an ideal site to test our approach." The scientists compared two different methods for estimating agricultural productivity yields using satellite imagery. The first approach involved "ground truthing," or conducting ground surveys to check the accuracy of yield estimates calculated using the satellite data, which was donated by the company Terra Bella. For this part of the study, Burke and his field team spent weeks conducting house-to-house surveys with his staff, talking to farmers and gathering information about individual farms. "We get a lot of great data, but it's incredibly time consuming and fairly expensive, meaning we can only survey at most a thousand or so farmers during one campaign," Burke said. "If you want to scale up our operation, you don't want to have to recollect ground survey data everywhere in the world." For this reason, the team also tested an alternative "uncalibrated" approach that did not depend on ground survey data to make predictions. Instead, it uses a computer model of how crops grow, along with information on local weather conditions, to help interpret the satellite imagery and predict yields. "Just combining the imagery with computer-based crop models allows us to make surprisingly accurate predictions, just based on the imagery alone, of actual productivity on the field," Burke said. The researchers have plans to scale up their project and test their approach across more of Africa. "Our aspiration is to make accurate seasonal predictions of agricultural productivity for every corner of Sub-Saharan Africa," Burke said. "Our hope is that this approach we've developed using satellites could allow a huge leap in in our ability to understand and improve agricultural productivity in poor parts of the world." Lobell is also the deputy director of Stanford's the Center on Food Security and the Environment and a Senior Fellow at the Stanford Woods Institute for the Environment.
Related Links Stanford's School of Earth, Energy and Environmental Sciences Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |