Energy News  
FARM NEWS
The future of agriculture is computerized
by Staff Writers
Boston MA (SPX) Apr 08, 2019

file image

What goes into making plants taste good? For scientists in MIT's Media Lab, it takes a combination of botany, machine-learning algorithms, and some good old-fashioned chemistry.

Using all of the above, researchers in the Media Lab's Open Agriculture Initiative report that they have created basil plants that are likely more delicious than any you have ever tasted. No genetic modification is involved: The researchers used computer algorithms to determine the optimal growing conditions to maximize the concentration of flavorful molecules known as volatile compounds.

But that is just the beginning for the new field of "cyber agriculture," says Caleb Harper, a principal research scientist in MIT's Media Lab and director of the OpenAg group. His group is now working on enhancing the human disease-fighting properties of herbs, and they also hope to help growers adapt to changing climates by studying how crops grow under different conditions.

"Our goal is to design open-source technology at the intersection of data acquisition, sensing, and machine learning, and apply it to agricultural research in a way that hasn't been done before," Harper says. "We're really interested in building networked tools that can take a plant's experience, its phenotype, the set of stresses it encounters, and its genetics, and digitize that to allow us to understand the plant-environment interaction."

In their study of basil plants, which appears in the April 3 issue of PLOS ONE, the researchers found, to their surprise, that exposing plants to light 24 hours a day generated the best flavor. Traditional agricultural techniques would never have yielded that insight, says John de la Parra, the research lead for the OpenAg group and an author of the study.

"You couldn't have discovered this any other way. Unless you're in Antarctica, there isn't a 24-hour photoperiod to test in the real world," he says. "You had to have artificial circumstances in order to discover that."

Harper and Risto Miikkulainen, a professor of computer science at the University of Texas at Austin, are the senior authors of the paper. Arielle Johnson, a director's fellow at the Media Lab, and Elliot Meyerson of Cognizant Technology Solutions are the lead authors, and Timothy Savas, a special projects assistant at the Open Agriculture Initiative, is also an author.

Maximizing flavor
Located in a warehouse in Middleton, Massachusetts, the OpenAg plants are grown in shipping containers that have been retrofitted so that environmental conditions, including light, temperature, and humidity, can be carefully controlled.

This kind of agriculture has many names - controlled environmental agriculture, vertical farming, urban farming - and is still a niche market, but is growing fast, Harper says. In Japan, one such "plant factory" produces hundreds of thousands of heads of lettuce every week. However, there have also been many failed efforts, and there is very little sharing of information between companies working to develop these types of facilities.

One goal of the MIT initiative is to overcome that kind of secrecy, by making all of the OpenAg hardware, software, and data freely available.

"There is a big problem right now in the agricultural space in terms of lack of publicly available data, lack of standards in data collection, and lack of data sharing," Harper says. "So while machine learning and artificial intelligence and advanced algorithm design have moved so fast, the collection of well-tagged, meaningful agricultural data is way behind. Our tools being open-source, hopefully they will get spread faster and create the ability to do networked science together."

In the PLOS ONE study, the MIT team set out to demonstrate the feasibility of their approach, which involves growing plants under different sets of conditions in hydroponic containers that they call "food computers." This setup allowed them to vary the light duration and the duration of exposure to ultraviolet light.

Once the plants were full-grown, the researchers evaluated the taste of the basil by measuring the concentration of volatile compounds found in the leaves, using traditional analytical chemistry techniques such as gas chromatography and mass spectrometry. These molecules include valuable nutrients and antioxidants, so enhancing flavor can also offer health benefits.

All of the information from the plant experiments was then fed into machine-learning algorithms that the MIT and Cognizant (formerly Sentient Technologies) teams developed. The algorithms evaluated millions of possible combinations of light and UV duration, and generated sets of conditions that would maximize flavor, including the 24-hour daylight regime.

Moving beyond flavor, the researchers are now working on developing basil plants with higher levels of compounds that could help to combat diseases such as diabetes. Basil and other plants are known to contain compounds that help control blood sugar, and in previous work, de la Parra has shown that these compounds can be boosted by varying environmental conditions.

The researchers are now studying the effects of tuning other environmental variables such as temperature, humidity, and the color of light, as well as the effects of adding plant hormones or nutrients. In one study, they are exposing plants to chitosan, a polymer found in insect shells, which makes the plant produce different chemical compounds to ward off the insect attack.

They are also interested in using their approach to increase yields of medicinal plants such as the Madagascar periwinkle, which is the only source of the anticancer compounds vincristine and vinblastine.

"You can see this paper as the opening shot for many different things that can be applied, and it's an exhibition of the power of the tools that we've built so far," de la Parra says. "This was the archetype for what we can now do on a bigger scale."

Climate adaptation
Another important application for cyber agriculture, the researchers say, is adaptation to climate change. While it usually takes years or decades to study how different conditions will affect crops, in a controlled agricultural environment, many experiments can be done in a short period of time.

"When you grow things in a field, you have to rely on the weather and other factors to cooperate, and you have to wait for the next growing season," de la Parra says. "With systems like ours, we can vastly increase the amount of knowledge that can be gained much more quickly."

The OpenAg team is currently performing one such study on hazelnut trees for candy manufacturer Ferrero, which consumes about 25 percent of the world's hazelnuts.

As part of their educational mission, the researchers have also developed small "personal food computers" - boxes that can be used to grow plants under controlled conditions and send data back to the MIT team. These are now used by many high school and middle school students in the United States, among a network of diverse users spread across 65 countries, who can share their ideas and results via an online forum.

"For us, each box is a point of data which we're very interested in getting, but it's also a platform of experimentation for teaching environmental science, coding, chemistry, and math in a new way," Harper says.

Research paper


Related Links
Massachusetts Institute of Technology
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FARM NEWS
'Cow toilets' in Netherlands aim to cut e-moo-ssions
The Hague (AFP) March 29, 2019
Teaching cows to use the toilet is not the easiest task, but a Dutch inventor is banking on a new bovine urinal to help cut emissions that cause environmental damage. Tests have started on a farm in the Netherlands on the device which collects some of the 15 to 20 litres of urine that the average cow produces a day. That produces huge amounts of ammonia in a country like the Netherlands, which is the world's second biggest agricultural exporter after the United States. "We are tackling the p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
Declassified U2 spy plane images reveal bygone Middle Eastern archaeological features

Researchers unveil effects of dust particles on cloud properties

Experts reveal that clouds have moderated warming triggered by climate change

Free satellite data available to help tackle public sector challenges

FARM NEWS
China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

Second GPS III satellite arrives at Cape Canaveral ahead of July launch

GPS 3 space vehicle 02 "Magellan" arrives in Florida; prepares for July launch

Russia plans to launch Glonass-M satellite in mid-May

FARM NEWS
Help NASA Measure Trees with Your Smartphone

US-China trade war 'imperils' Amazon forest, experts warn

Bolsonaro says Brazil owes world nothing on environment

Project promises to turn palm oil plantations back into rainforest in Borneo

FARM NEWS
Tracking sludge flow for better wastewater treatment and more biogas

OU engineers discover novel role of water in production of renewable fuels

Mega-order from Finland for Dutch energy technology

Scientists turn back evolutionary clock to develop high-CO2-tolerant microalgae

FARM NEWS
Durability vs. recyclability: Dueling goals in making electronics more sustainable

Renewables are a better investment than carbon capture for tackling climate change

Catalyst research for solar fuels: Amorphous molybdenum sulfide works best

Mystery of negative capacitance in perovskite solar cells solved

FARM NEWS
The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

E.ON announces start of construction on South Texas windfarm

DNV GL to deliver 5-minute energy forecast pilot for Australia's Ararat Wind Farm

FARM NEWS
Contentious India-backed Australia mine clears major hurdle

Smog chokes coal-dependent Poland with no end in sight

Push for more coal power in China imperils climate

China investigates officials after deadly mine accident

FARM NEWS
Hong Kong democracy leaders convicted in Umbrella Movement trial

Diplomats, activists decry Chinese 'threats' at UN rights council

Hong Kong's China extradition plan sparks alarm

China offering no proof against ex-Interpol chief, wife says









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.