Surprising two-way journey for apple on the Silk Road by Staff Writers Washington DC (SPX) Aug 21, 2017
Centuries ago, the ancient networks of the Silk Road facilitated a political and economic openness between the nations of Eurasia. But this network also opened pathways for genetic exchange that shaped one of the world's most popular fruits: the apple. As travelers journeyed east and west along the Silk Road, trading their goods and ideas, they brought with them hitchhiking apple seeds, discarded from the choicest fruit they pulled from wild trees. This early selection would eventually lead to the 7,500 varieties of apple that exist today. Researchers at Boyce Thompson Institute (BTI) have been working hard to excavate the mysteries of the apple's evolutionary history, and a new publication this week in Nature Communications reveals surprising insights into the genetic exchange that brought us today's modern, domesticated apple, Malus domestica. In collaboration with scientists from Cornell University and Shandong Agricultural University in China, the researchers sequenced and compared the genomes of 117 diverse apple accessions, including M. domestica and 23 wild species from North America, Europe, and East and central Asia.
A tale of two roads With the results of this new study, the researchers could zoom in on the map for better resolution. "We narrowed down the origin of domesticated apple from very broad central Asia to Kazakhstan area west of Tian Shan Mountain," explained Zhangjun Fei, BTI professor and lead author of this study. In addition to pinpointing the western apple's origin, the authors were excited to discover that the first domesticated apple had also traveled to the east, hybridizing with local wild apples along the way, yielding the ancestors of soft, dessert apples cultivated in China today. "We pointed out two major evolutionary routes, west and east, along the Silk Road, revealing fruit quality changes in every step along the way," summarized Fei. Although wild M. sieversii grows east of Tian Shan Mountain, in the Xinjiang region of China, the ecotype there was never cultivated, and did not contribute to the eastern domesticated hybrid. Instead, it has remained isolated all these centuries, maintaining a pool of diversity yet untapped by human selection. First-author Yang Bai remarked, "it is a hidden jewel for apple breeders to explore further."
The sour (but firm) side of the story The authors found that M. sylvestris has contributed so extensively to the apple's genome that the modern apple is actually more similar to the sour crabapple than to its Kazakhstani ancestor, M. sieversii. "For the ancestral species, Malus sieversii, the fruits are generally much larger than other wild apples. They are also soft and have a very plain flavor that people don't like much," Bai remarked. The hybridization between ancient cultivated apples and M. sylvestris, followed by extensive human selection, gave us new apples that are larger and fuller in flavor, and with a crispy firmness that gives them a longer shelf life. Bai further explained, "The modern domesticated apples have higher and well-balanced sugar and organic acid contents. That is how the apple started to become a popular and favored fruit."
A sizeable discovery with big potential "This is not quite the case for apple. Its domestication started with a medium to large-sized fruit," asserted Bai. "It has great potential for further enlarging fruit size in breeding programs." By comparing the many different apple genomes, the researchers were able to find evidence supporting two different evolutionary steps contributing to apple's size increase - one before, and one after domestication. The large size of Malus sieversii compared to other wild apples gave it a great advantage for domestication. It had already evolved to a suitable size before it was even cultivated, likely making it more attractive to growers who would then not need to spend much effort selecting for larger fruits. Such a lack of size selection also means that the genes responsible for size increase still retain a variability that holds potential for future selection. But it can also make identification of the size-associated genes difficult. Despite this, the extensive breadth of the new study allowed the researchers to identify several genetic markers underlying the fruit size increases, which is great news for breeders who might want to further increase the apple's girth.
The apple (genome) falls far from the tree "The genomic regions and candidate genes under human selection for a certain trait identified in this study will be very helpful and inspiring to breeders working on the same trait," asserted Fei, who expects that the results from this study will, "improve speed and accuracy of 'marker-assisted selection' in apple." Now with an extensive and diverse collection of representative apple genomes, thorough and careful analyses have allowed Fei's group to distinguish important genetic markers that will greatly aid breeders in their quest for better apples - be it for disease resistance, shelf-life, taste, or even size. When asked how big she thinks an apple could get through breeding, Bai responded with a twinkle in her eye, "Well, in my wild imagination, maybe one day it can be as big as a watermelon."
Miami (AFP) Aug 15, 2017 Climate change will have a negative effect on key crops such as wheat, rice, and maize, according to a major scientific report out Tuesday that reviewed 70 prior studies on global warming and agriculture. Experts analyzed previous research that used a variety of methods, from simulating how crops will react to temperature changes at the global and local scale, to statistical models based on ... read more Related Links Boyce Thompson Institute Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |