Study shows how to make fertilizer from sunlight by Staff Writers Boulder CO (SPX) Apr 27, 2016
A group of scientists led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden and involving the University of Colorado Boulder has developed a new, eco-friendly method to produce ammonia, the main ingredient of fertilizer, using light. The researchers discovered that light energy can be used to change dinitrogen (N2), a molecule made of two nitrogen atoms, to ammonia (NH3), a compound of nitrogen and hydrogen. The researchers hope the newly discovered, light-driven chemical process that creates ammonia can lead to future developments that will enhance global agricultural practices while decreasing the dependence of farmers on fossil fuels. Traditionally there have been two main ways to transform nitrogen, the most common gas in Earth's atmosphere, for use by living organisms. One is a biological process that occurs when atmospheric nitrogen is "fixed" by bacteria found in the roots of some plants like legumes and then converted to ammonia by an enzyme called nitrogenase. The second, called the Haber-Bosch process, is an industrial method developed a century ago that changes N2 to ammonia in a complex chain of events requiring high temperatures and pressures. The Haber-Bosch process requires the significant use of fossil fuels, resulting in a corresponding hike in greenhouse gas emissions. Led by NREL Research Scientist Paul King, the new paper appears in the April 22 issue of Science. CU-Boulder co-authors include Assistant Professor Gordana Dukovic of Department of Chemistry and Biochemistry, former doctoral student Molly Wilker, now a faculty member at Luther College in Iowa, and current doctoral student Hayden Hamby. Funded by the Department of Energy (DOE) and NREL, the study also included researchers from Utah State University (USU) and Montana State University (MSU). As part of the study the team showed that nanocrystals of the compound cadmium sulfide can be used to harvest light, which then energizes electrons enough to trigger the transition of N2 into ammonia. "The key was to combine semiconductor nanocrystals that absorb light with nitrogenase, nature's catalyst that converts nitrogen to ammonia," said Dukovic, who received a prestigious Sloan Research Fellowship in 2014 and who was named a National Science Foundation CAREER Award winner in 2012. "By integrating nanoscience and biochemistry, we have created a new, more sustainable method for this age-old reaction," Dukovic said. "Using light harvesting to drive difficult catalytic reactions has the potential to create new, more efficient chemical and fuel production technologies," said NREL Research Scientist Katherine Brown. "This new ammonia-producing process is the first example of how light energy can be directly coupled to enzymatic N2 reduction, meaning sunlight or artificial light can power the reaction." Other paper co-authors include Derek Harris, Andrew Rasmussen, Nimesh Khadka and Lance Seefeldt of USU and Stephen Keable and John Peters of MSU.
Related Links University of Colorado at Boulder Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |