. Energy News .




.
FARM NEWS
Shedding light on genetics of rice metabolism
by Staff Writers
Yokohama City, Japan (SPX) Feb 13, 2012

Rice grain metabolites were annotated in this study. Rice grain metabolites are represented in the simplified metabolic pathway. Node color represents the method used for analysis of that metabolite: gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS, yellow), capillary electro-phoresis-time-of-flight-mass spectrometry (CE-TOF-MS, blue), liquid chromatography-ion trap-time-of-flight-mass spectrometry (LC-IT-TOF-MS, green) and liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS, red). Node shape represents the reliability of metabolite annotation: rectangles indicate metabolites whose structure was identified by comparing their chromatographic behavior and mass spectra with standard compounds, whereas diamonds indicate metabolites whose structure was determined by MS and MS/MS spectral data. Credit: RIKEN.

A large-scale study analyzing metabolic compounds in rice grains conducted by researchers at the RIKEN Plant Science Center (PSC) and their collaborators has identified 131 rice metabolites and clarified the genetic and environmental factors that influence their production.

The findings provide a natural way to bioengineer improved rice grain varieties by selectively increasing production of useful metabolites, boosting the nutritional value of crops.

As one of the most important staple crops, rice plays a central role in supplying the nutrients needed to keep the world population healthy. The nutritional value of rice crops is determined by the types and quantities of metabolites they contain, which are strongly affected by environmental and genetic factors.

Understanding these factors is crucial to increasing nutritional value, but the complex relationship between genes and plant metabolism makes this a formidable challenge.

At the heart of this challenge are so-called quantitative train loci (QTL), stretches of DNA which contain or link to the genes for a phenotypic trait, in this case metabolite levels. To breed lines of rice which produce more of a specific metabolite (for example one that boosts its nutritional value), you have to know which DNA regions are involved and in what role.

This is hard because metabolite levels are controlled by many different QTLs and also strongly influenced by the environment.

To solve this problem, researchers at the PSC teamed up with their collaborators at the National Institute of Agrobiological Science (NIAS) to analyze rice grain metabolomic QTL (mQTL) using state-of-the-art mass spectroscopy pipelines developed at the PSC.

Analysis of 85 experimental lines of rice specially bred for QTL analysis, prepared by the NIAS researchers and harvested in 2005 and 2007, yielded a total of 759 metabolite signals. From these, the team identified 131 metabolites, including amino acids, lipids, and flavonoids, and identified a total of 801 mQTLs around the rice genome.

Most important of all, the team showed that while the levels of most metabolites they identified are influenced mainly by environmental factors, genetics can sometimes play a stronger role: coordinated control of amino acids was linked to an mQTL "hotspot" on chromosome 3, while variation of flavenoid levels was linked to genetic factors.

Published in The Plant Journal, the findings promise a future of faster, more effective breeding techniques for rice, and mark a major step toward a healthier, better-fed world.

Related Links
RIKEN Plant Science Center (PSC)
Farming Today - Suppliers and Technology




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FARM NEWS
Fresh city tomatoes, any time
Oberhausen, Germany (SPX) Feb 13, 2012
Why not produce lettuce, beans and tomatoes where most of the consumers are to be found: in the city? The flat roofs of many buildings are well-suited for growing vegetables. Rooftop greenhouses can also make use of a building's waste heat and cleaned waste water. What could be fresher? On his way home from the office, the computer scientist harvests tomatoes from his company's rooftop gre ... read more


FARM NEWS
Deconstructing a Mystery: What Caused Snowmaggedon?

Pleiades captures its first images using e2v sensors

FARM NEWS
GPS court ruling leaves US phone tracking unclear

Russia May Spend Almost $12 bln on Glonass in 2012-2020

FARM NEWS
UN recognizes US Girl Scouts for palm oil effort

FARM NEWS
Study: Mandating ethanol wrong solution

Sustainable land use strategies to support bioenergy

Fuel from market waste

Enerkem and GreenField Ethanol Announce Quebec's First Waste-to-Biofuels Production Facility

FARM NEWS
Industry welcomes renewed commitment to Solar Flagships program

AORA Solar Launches "Always-On" Solar Power Station in Spain

Solar Inverter Market Hits Speed Bump in 2011

Solarcells work better in two wavelengths

FARM NEWS
New EU wind power capacity near level

FARM NEWS
FARM NEWS
China police officer killed in Tibetan area: state media

Tibetan nun self-immolates in China: rights groups

Chinese village experiments with democracy

Police chief flies to Beijing amid defection rumours


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement