|
. | . |
|
by Staff Writers Riverside CA (SPX) Sep 23, 2015
A team of scientists from the University of California, Riverside and the International Rice Research Institute (IRRI), the Philippines, recently published a study unlocking the secret to just how rice seeds might be able to survive when grown under water. The study, published in the leading scientific journal Nature Plants, identified a gene that controls the availability of sugar to a growing seed shoot--especially when under flooded conditions. "The seed of rice is unusual among crops because it can germinate and grow into a young plant that can capture light energy even when the entire process occurs underwater," said Julia Bailey-Serres, one of the paper's authors and a professor of genetics at UC Riverside. "The gene identified--the AG1 gene--helps in this process by allowing energy reserves that are in the seed to be efficiently moved to the growing shoot. The seed planted underwater grows into a seedling that can escape a shallow flood." This process regulated by this new gene is opposite of that regulated by the SUB1A gene that was discovered previously to enable rice plants to survive complete submergence due to a seasonable flood. Bailey-Serres, who has worked extensively on the mechanism of submergence tolerance, commented, "Plants with SUB1A essentially hibernate when they are underwater; a situation where energy reserves are safeguarded."
A surprising find "The gene that allows the seed to escape a flood, the AG1 gene, is one of a family of 13 genes in rice," explained Bailey-Serres, the director of UC Riverside's Center for Plant Cell Biology. "Other members of this family recently have been shown by a team of university researchers and a plant biotech group at Syngenta, to help the plant to move sugar from leaves to the young developing seed in fertilized flowers. When and where to move and use sugars is important. We think the important gene tells the cell that it does not have enough sugar--keeping the tap open for more to be moved from the seed to the growing shoot."
Surviving under water Moreover, one of the major limiting factors to direct seeding is weeds because these can germinate well under air--although not underwater without air--so if rice can germinate well underwater while none of the weeds do, then rice will be able to out-compete the weeds.
Mystery of the missing gene He explained that the missing trait is a problem, especially with modern Indica varieties as traditional ones have it, whereas modern ones do not.
Looking for an answer IRRI researcher Endang Septiningsih, who initiated and led the project, looked for a yield penalty or negative effect on the yield by AG1 but found none. "We actually think it got lost," Kretzschmar said. "And we knew where it got lost. The gene got lost at the stage when IR8, the famous miracle rice variety, was bred because one of the parents had the gene, while the other did not."
Fitting pieces together
The way forward "AG1 works well on moderate stress conditions. When we combined it with the SUB1A gene in the same genetic backgrounds it worked well, although they have opposing mechanisms. In severe stress conditions, however, AG1 alone is not sufficient--additional quantitative trait loci (QTLs) or genes that complement the AG1 mechanism will be needed. IRRI and partner universities are working hard in that direction," said Septiningsih, who recently joined the Department of Soil and Crop Sciences, Texas A and M University. Another important question they are addressing is whether seed that can be directly seeded underwater - requiring the escape strategy - can also carry the SUB1A gene for submergence tolerance. This is a question that Bailey-Serres has been investigating with Septiningsih and Bangladeshi student Rejbana Alam, who contributed to the characterization of the role of AG1 during seed germination.
Related Links University of California - Riverside Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |