|
. | . |
|
by Staff Writers Rijvisschestraat, Belgium (SPX) Sep 15, 2015
VIB and UGent scientists have developed a new method which allows them to predict the final size of a plant while it is still a seedling. Thanks to this method, which is based on the knowledge that a set of genes is associated with the final size of a leaf, scientists will be able to significantly accelerate plant breeding programs. The VIB/UGent scientists were able to identify this set of genes through advanced and highly detailed analyses. Expression analysis of specific genes will help breeders select the most useful crossing products at a very early stage. It takes a long time to develop new strains of plants with a greater yield or greater resistance to disease. Selecting the most useful crossing products, in particular, is a labor-intensive, time-consuming and expensive process. At present, breeding products must be manually infected to determine whether they are disease-resistant, while corn plants must first produce ears before their yield can be determined. This selection process can be made much more efficient by choosing plants on the basis of genetic data rather than on the basis of external characteristics. After all, many external properties are contained in DNA. Thanks to an improved understanding of how plant growth and development are regulated at the molecular level, it is now known to a large extent which DNA sequences are responsible for which traits. By identifying the presence of such DNA sequences (also known as genetic markers) in seedlings, it is possible to predict at a very early stage whether the fully grown plants will be disease-resistant, even without having to infect the plants. This type of breeding is called marker-assisted breeding. A team of scientists from VIB and UGent, led by Prof. Dirk Inze, developed a new method designed to predict the size of the leaves of a fully grown corn plant while the plant itself is still a seedling. This method is RNA-based rather than DNA-based.
RNA rather than DNA In other words, the set of all RNA molecules (also known as the transcriptome) provides a much greater insight into which genes actively contribute to a growth process. Plant scientist Dr. Joke Baute, a member of Prof. Dirk Inze's VIB research group, and fellow scientists from the Italian Institute of Life Sciences in Pisa conducted a study into the transcriptome of the cell division zone in leaves of corn seedlings. The scientists were able to link a set of RNA molecules to external properties, which are not expressed until much later in the growth process, such as final leaf size and biomass production. This knowledge will allow breeders to make much more specific choices in the plant breeding process in the future. The scientists' results were published in two scientific papers in the journal Genome Biology.
More mouths to feed VIB/UGent scientist Dirk Inze: "We are world leaders in investigating the mechanisms which determine plant growth and plant size. These new insights will help us to accelerate the plant breeding process. In the long term, breeders will be able to select the most useful plants at a very early stage, which will considerably speed up breeding programs." Joke Baute et al. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population; Genome Biology 2015 - Dell'Acqua et al. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology 2015
Related Links Flanders Institute for Biotechnology Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |