Energy News  
FARM NEWS
Scientists engineer crops to conserve water, resist drought
by Staff Writers
Champaign IL (SPX) Mar 08, 2018

Stephen P. Long, a professor of crop sciences and of plant biology (center), with postdoctoral researchers Johannes Kromdijk, (left) and Katarzyna Glowacka, developed crops that use water 25 percent more efficiently by boosting the level of a protein. Image courtesy Brian Stauffer/University of Illinois.

Agriculture already monopolizes 90 percent of global freshwater - yet production still needs to dramatically increase to feed and fuel this century's growing population. For the first time, scientists have improved how a crop uses water by 25 percent without compromising yield by altering the expression of one gene that is found in all plants, as reported in Nature Communications.

The research is part of the international research project Realizing Increased Photosynthetic Efficiency (RIPE) that is supported by Bill and Melinda Gates Foundation, the Foundation for Food and Agriculture Research, and the U.K. Department for International Development.

"This is a major breakthrough," said RIPE Director Stephen Long, Ikenberry Endowed Chair of Plant Biology and Crop Sciences.

"Crop yields have steadily improved over the past 60 years, but the amount of water required to produce one ton of grain remains unchanged - which led most to assume that this factor could not change. Proving that our theory works in practice should open the door to much more research and development to achieve this all-important goal for the future."

The international team increased the levels of a photosynthetic protein (PsbS) to conserve water by tricking plants into partially closing their stomata, the microscopic pores in the leaf that allow water to escape. Stomata are the gatekeepers to plants: When open, carbon dioxide enters the plant to fuel photosynthesis, but water is allowed to escape through the process of transpiration.

"These plants had more water than they needed, but that won't always be the case," said co-first author Katarzyna Glowacka, a postdoctoral researcher who led this research at the Carl R. Woese Institute for Genomic Biology (IGB). "When water is limited, these modified plants will grow faster and yield more - they will pay less of a penalty than their non-modified counterparts."

The team improved the plant's water-use-efficiency - the ratio of carbon dioxide entering the plant to water escaping - by 25 percent without significantly sacrificing photosynthesis or yield in real-world field trials.

The carbon dioxide concentration in our atmosphere has increased by 25 percent in just the past 70 years, allowing the plant to amass enough carbon dioxide without fully opening its stomata. "Evolution has not kept pace with this rapid change, so scientists have given it a helping hand," said Long, who is also a professor of crop sciences at Lancaster University.

Four factors can trigger stomata to open and close: humidity, carbon dioxide levels in the plant, the quality of light, and the quantity of light. This study is the first report of hacking stomatal responses to the quantity of light.

PsbS is a key part of a signaling pathway in the plant that relays information about the quantity of light. By increasing PsbS, the signal says there is not enough light energy for the plant to photosynthesize, which triggers the stomata to close since carbon dioxide is not needed to fuel photosynthesis.

This research complements previous work, published in Science, which showed that increasing PsbS and two other proteins can improve photosynthesis and increase productivity by as much as 20 percent. Now the team plans to combine the gains from these two studies to improve production and water-use by balancing the expression of these three proteins.

For this study, the team tested their hypothesis using tobacco, a model crop that is easier to modify and faster to test than other crops. Now they will apply their discoveries to improve the water-use-efficiency of food crops and test their efficacy in water-limited conditions.

"Making crop plants more water-use efficient is arguably the greatest challenge for current and future plant scientists," said co-first author Johannes Kromdijk, a postdoctoral researcher at the IGB.

"Our results show that increased PsbS expression allows crop plants to be more conservative with water use, which we think will help to better distribute available water resources over the duration of the growing season and keep the crop more productive during dry spells."


Related Links
Institute for Genomic Biology, University of Illinois at Urbana-Champaign
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FARM NEWS
Genetic tweak makes plants use 25% less water
Paris (AFP) March 6, 2018
Researchers on Tuesday unveiled a genetic modification that enables plants to use a quarter less water with scant reduction in yield. By altering a single gene, scientists coaxed tobacco plants - a model crop often used in experiments - to grow to near normal size with only 75 percent of the water they usually require. If major food crops respond the same way, they said, the first-of-its-kind genetic "hack" could help feed the growing population of an increasingly water-starved world. "Th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
Where fresh is cool in Bay of Bengal

Study discovers South African wildfires create climate cooling

NASA space laser completes 2,000-mile road trip

New data helps explain recent fluctuations in Earth's magnetic field

FARM NEWS
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

FARM NEWS
Diverse tropical forests grow fast despite widespread phosphorus limitation

Payments to protect carbon stored in forests must increase to defend against rubber

Chanel attacked for felling trees for Paris fashion show

African jobs at risk over French wood giant bankruptcy

FARM NEWS
Malaysia to press EU on planned palm oil ban in biofuels

Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

Pausing evolution makes bioproduction of chemicals affordable and efficient

FARM NEWS
Materials 'sandwich' breaks barrier for solar cell efficiency

Solar and wind power could meet four-fifths of US electricity demand

Avaada Power inks pact to develop 500MW solar capacities in Andhra Pradesh

New dual-atom catalyst shows promise to yield clean energy by artificial photosynthesis

FARM NEWS
First UK wind farm transfers from commercial to community ownership

A huge component of German wind farm has left shore

Windlab exceeds prospectus forecast; scales up operations

World's first floating wind farm put to the test

FARM NEWS
Michigan utility company to go zero coal

Australia won't fund mega Adani mine rail link

New York unveils plans for fossil fuel divestment

French energy company EDF to replace coal in China

FARM NEWS
Naps and noodle talk at Chinese parliament term limit 'debate'

China signals hardened stance on Hong Kong, Taiwan

US journalists fear China detained their families

Historic meeting lauds lifetime power for Xi









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.