Energy News  
FARM NEWS
Sat nav for bread wheat uncovers hidden genes
by Staff Writers
Norwich, UK (SPX) Apr 20, 2017


More than two billion people worldwide rely on wheat as a staple food, making it a vital crop for global food security. However, yield increases have stagnated since the mid-1990s. A better map of the wheat genome is essential for breaking the deadlock. It will help reveal the location of important traits that can be bred into elite varieties.

Scientists have created the most accurate navigation system for the bread wheat genome to date - allowing academics and breeders to analyse its genes more easily than ever before. Wheat is one of the world's most important staple cereals but is also the most complex. Three sub-genomes together contain around five times more DNA than the human genome. Nearly 80% of this genetic material is repetitive, making it even harder to sequence and analyse.

Now, harnessing advanced sequencing technology and computational approaches, scientists from the Earlham Institute, with colleagues at the John Innes Centre, have published the world's most complete picture of the wheat genome. It includes the location and detailed annotation of over 100,000 wheat genes. More than a fifth (22%) of these were completely absent from earlier assemblies, or found only as fragments.

"We applied the latest sequencing and bioinformatic techniques we have developed at our institute to the huge and complex wheat genome. We were able to achieve the best results anyone had seen, including uncovering previously hidden genes," says senior author Matthew Clark, Head of Technology Development at the Earlham Institute (EI).

"Moreover, all our methods are open, and available for anyone to use. This is critical as wheat DNA varies across the world, which is key to its success in different environments. We have already started to sequence many varieties of UK wheat using these methods, and we hope others will sequence the genomes of wheat important in their country," he says.

The results, published in Genome Research, focus on the variety called Chinese Spring - the standard cultivar for genomic research. The genome and annotation have been accessed more than any other resource on the genomic portal Plant Ensembl , where they have been available for a over year for thousands of researchers and breeders to use. The project was funded by Biotechnology and Biological Sciences Research council grants to EI, John Innes Centre (JIC), European Bioinformatics Institute and Rothamsted Research, with contributions from international partners at the PSGB (Munich, Germany) and University Of Western Australia.

The improved genome assembly combined with high quality sequencing data and novel methods allowed EI scientists to more accurately identify genes and areas of the genome with interesting functions. In previous assemblies, many genes were missing or found only as fragments. By identifying the entire DNA sequences of genes, EI scientists have made it possible to identify more complete sets of similar genes - called gene families - that are important for yield, disease resistance or other qualities important for agriculture.

EI scientists have already used the advances to explore UK varieties and they have released six wheat genomes on the EI's open data website Grassroots Genomics. They and scientists from the John Innes Centre and The Sainsbury Laboratory have also started to use the results to provide a more accurate picture of where to find disease resistance genes and genes important for the visco-elastic properties of bread - which make it soft and spongy.

More than two billion people worldwide rely on wheat as a staple food, making it a vital crop for global food security. However, yield increases have stagnated since the mid-1990s. A better map of the wheat genome is essential for breaking the deadlock. It will help reveal the location of important traits that can be bred into elite varieties.

Lead author Bernardo Clavijo from the Earlham Institute says: "Scientists all over the world are already using these new results. But even more importantly, our open methods allow a new level of accuracy for any wheat line, and many other complex genomes. Assembly for this complexity of genome has always been a bit of a one-off work of art. Now we have a way to do it reliably and to a standard that enables thorough analysis."

"We are moving towards a scenario where more and more wheat lines will be sequenced and compared using these and similar techniques. This kind of detail on every wheat line will enable new discoveries and accelerate breeding. We are already working with the breeding industry as well as other researchers to enable more detailed analysis of elite varieties, which will impact the wheat breeding programs directly."

Ksenia Krasileva, a co-author on the new study, likens the creation of an assembly to navigating using GPS: "Breeders might know there is something really useful in wheat, for example for protecting crops against disease or for improving gluten for bread-making, but without a good quality genome assembly it's like driving through thick fog. Full genome assembly and annotating genes provides a sat nav view of wheat genes to signpost the way to useful genes in all varieties of the species."

EI group leader David Swarbreck says: "This is the most comprehensive wheat gene annotation to date, it represents a significant advance that will assist wheat breeders and researchers in accelerating further improvements, particularly as the results are freely available for anyone to use."

Co-author Michael Bevan from the John Innes Centre says: "The new resources we have helped develop have already broken down barriers and are providing new ways of studying wheat. They will allow breeders to more accurately predict which lines to breed from, and to directly identify the most promising progeny. This could save years when making new varieties."

Research paper

FARM NEWS
Nearly two billion people depend on imported food
Helsinki, Finland (SPX) Apr 20, 2017
Researchers show empirically: when population pressure increases, food is imported. The Earth's capacity to feed its growing population is limited - and unevenly distributed. An increase in cultivated land and the use of more efficient production technology are partly buffering the problem, but in many areas it is instead solved by increasing food imports. For the first time, researchers at Aalt ... read more

Related Links
Earlham Institute
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
When Swarm met Steve

'Detergent' Molecules May Drive Recent Methane Changes

Banned industrial solvent sheds new light on methane mystery

Raytheon speeds delivery and secures satellite weather data

FARM NEWS
Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

Northrop Grumman, Honeywell receive EGI-M contracts

FARM NEWS
Belgium's 'fairytale' bluebell forest victim of own beauty

Application of statistical method shows promise mitigating climate change effects on pine

Greenhouse gas effect caused by mangrove forest conversion is quite significant

Stanford study explores risk of deforestation as agriculture expands in Africa

FARM NEWS
Degradable electronic components created from corn starch

The Very Hungry Caterpillar joins fight against plastic pollution

Towards more efficient biofuels by making oil from algae

Algal residue - an alternative carbon resource for pharmaceuticals and polyesters

FARM NEWS
Solar power reliability in Britain boosted with batteries

Center for Sustainable Energy Partners with EnergySage to Offer an Online Multifamily Solar Marketplace

Swedish leading solar energy technology provider Midsummer offers complete BIPV metal roof systems

Adjusting solar panel angles a few times a year makes them more efficient

FARM NEWS
Norwegian company envisions wind energy role for oil production

Oklahoma to end tax credits for wind energy

German power company examining new wind energy options.

Canada sees emerging role for wind energy

FARM NEWS
Coal power dropping as natural gas, renewables grow, U.S. report finds

US environmental groups file suit to block new coal mining on public lands

Adani to begin work on Australia mine by August: report

Czech energy group bucks green trend with bet on coal

FARM NEWS
For Chinese fans, popular teen band are mama's boys

China rights lawyer denied own defence for trial

Chinese tycoon accuses Beijing of meddling in interview

Dutch panda mania as giant bears arrive from China









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.