Researchers image roots in the ground by Staff Writers Bonn, Germany (SPX) Aug 26, 2016
It's a familiar hazard of vacation time: While you're conspicuously absent, your colleagues in the office forget to water and fertilize the plants - often leaving behind nothing but a brownish skeleton. Whether a plant thrives or wastes away depends above all on whether its roots get enough water and nutrients. Geophysicists at the University of Bonn have now visualized such processes for the first time using electrical impedance tomography. The researchers have now published their results in the scientific journal Biogeosciences. Plants imbibe the vital cocktail of water and mineral nutrients through their roots. This twisting organ not only provides purchase in the soil - the fine root hairs actually grow actively into soil zones where the fount of nutrients bubbles particularly richly. Plants take up minerals either directly from the soil solution or get them from clay minerals or humic substances. In the end, these microscopically small processes at the root hairs of plants also determine whether the world population goes hungry or has enough to eat. This connection explains the great scientific interest in these processes in the soil. The mineral substances in the soil are usually present in the form of electrically charged ions. "The ions influence the electrical properties of the roots, which enables us to visualize the uptake of nutrients by roots in a new way", says Prof. Dr. Andreas Kemna, geophysicist at the University of Bonn. His team has now developed a new method: The scientists "x-ray" the root systems of the plants using electrical impedance tomography, which is also used as an imaging technique in medicine. "Unlike doctors, however, we not only measure electrical conductivity, but also electrical polarizability, which is influenced by the uptake of nutrients at the plant root", explains Prof. Kemna. While conductivity describes the ability of a medium to transport electrical charges, polarizability is the ability to align local positive and negative charges using an electrical field - similar to a compass needle in a magnetic field.
Conclusions regarding nutrient uptake by the root system By performing the electrical impedance tomography at different measurement frequencies, the researchers get frequency-dependent tomograms, which can be visualized in color as cloud-like forms on the computer screen. The individual fine roots can not be recognized. "However, the resolution is good enough to permit conclusions regarding the nutrient dynamics of the root system of a plant", says doctoral candidate Maximilian Weigand of Professor Kemna's team. When the plant is particularly active, for instance due to a rich offering of nutrients, water, and light, then there are correspondingly great changes in the polarization signals at the roots - for instance in the daytime compared to nighttime. However, if there is a stress situation, such as drought or a dearth of nutrients, then the lack of nutrients also leads to a visible drop in polarizability. This can then be visualized and observed through the tomography. "With this study, we have demonstrated the fundamental feasibility of the method", says Prof. Kemna. The next step is to use theoretical models to reproduce the electrical polarization processes in such measurements. In addition, the scientists also want to test their system out in the field, where there are still no suitable, non-destructive measurement methods to record the activity of root systems. Together with the Julich Research Center, a test with winter wheat is underway in Selhausen in the context of the Transregional Collaborative Research Centre "Patterns in Soil-Vegetation-Atmosphere Systems - Monitoring, Modelling and Data Assimilation". Prof. Kemna gives an example: "If we can optimize nutrient uptake, we will be able to anticipate and react better to the risks of drought due to climate change and possibly increase crop yields". The new method could be of valuable service in gaining a better fundamental understanding of the interactions between roots and soil. Publication: M. Weigand and A. Kemna: Multi-frequency electrical impedance tomography as a non-invasive tool to characterise and monitor crop root systems, Biogeosciences, DOI: 10.5194/bg-2016-154, in review
Related Links University of Bonn Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |