Energy News  
FARM NEWS
Research finds roots use chemical 'photos' to coordinate growth
by Staff Writers
Melbourne FL (SPX) Sep 15, 2017


This is a simple model for 'quorum' or collision sensing in Arabidopsis. (A) A growing lateral root from a young seedling encounters an established plant (red box). (B) Within a certain distance, ROS produced by the tip of the growing seedling contributes to oxidation of cell wall associated phenols to yield BQs (red arrow). DMBQ is shown here as an example. These BQs accumulate, contribute to the autocatalytic production of new ROS intermediates, amplify the signal (green arrow). (C) Evidence of an established root system arrests root elongation in a quorum-like process, regulating global root system architecture. Image courtesy Florida Institute of Technology.

Though it may look haphazard, the network of intertwining plant roots snaking through the soil actually represents a deliberate process. Root growth is guided by chemical snapshots taken by the young roots, allowing them to detect obstructions and coordinate the paths they take, new research led by Florida Institute of Technology finds.

Roots compete for and share resources with neighboring roots, as well as with billions of microbes. Until now, however, little has been known about how plants coordinate construction of these complex subterranean assemblies.

The new paper, "Redox-mediated Quorum Sensing in Plants," which is scheduled to be published Sept. 13 in PLOS ONE, is based on collaborative research by scientists at Florida Tech, Emory University and the University of Richmond. It answers some of the fundamental questions about how plants coordinate their growth and development in the soil.

And because the same reactions at work in root growth are also used by plants to fight off infections, these findings could significantly improve our understanding of plant immunity and lead to substantial boosts in crop yields.

"It turns out that plants use chemistry to create a highly accurate map of the road ahead for a particular root - the same chemistry that people once employed to develop black-and-white photos," said Andrew Palmer, an assistant professor of biological sciences at Florida Tech and leader of the university's research team.

Specifically, compounds known as quinones are found in both traditional photography and in the roots of plants. These compounds are crucial to the development of black and white photos because they increase the amount of silver particles deposited on photo paper creating a clear image through a process known as oxidation.

And according to the new research, these quinones are generated when a young root grows close to a more mature one. The production of these compounds would then be amplified in a process similar to developing photographs, providing a 'picture' of the nearby root.

Working with the model plant Arabidopsis thaliana, undergraduate researchers Alexandra Fuller and Phoebe Young at Emory, and Jamie Kitson-Finuff and Karl Schneider at Florida Tech confirmed the presence of a powerful oxidant at the growing tips of the roots. This oxidant reacts with materials on the surface of a mature root to produce the quinones.

These compounds in turn stimulate more oxidant production, creating an enhanced signal - like a snapshot - focused right in front of the young root, alerting it to the mature root and the plant to which it belongs. Florida Tech graduate students Stephen Lazar and Purvi Jain showed that the hydroquinone-like compounds suppress elongation of the young roots, and thus may help newly-growing roots avoid obstacles or competition.

"In a field full of growing plants, there is no central-planning office. Plants have to avoid collisions on a case-by-case basis, and we are finally uncovering the strategies that make it possible," Palmer said. "Perhaps even more important, plants may be using this same chemical process to get a snapshot of potential infections."

Research paper

FARM NEWS
Parched Jordan starts growing vegetables in
Aqaba, Jordan (AFP) Sept 7, 2017
Jordan, a water-poor country that is 90-percent desert, on Thursday launched a project to turn its sand dunes into farming land to produce food using sun and sea water. King Abdullah II and Norway's Crown Prince Haakon attended a ceremony to mark the official opening of the "Sahara Forest Project" near the southern port city of Aqaba. In a first stage, the project aims to produce up to 1 ... read more

Related Links
Florida Institute of Technology
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
Boeing to Design and Build Seven Medium Earth Orbit Satellites for SES

Airbus to reshape Earth observation market with its Pleiades Neo constellation

Ball Aerospace Delivers the JPSS-1 Weather Satellite to Launch Site

Ship exhaust helps grow bigger ocean thunderstorms

FARM NEWS
Second Lockheed Martin GPS 3 Satellite completes launch simulation tests

Nine Satellites in exactEarth's Real-Time Constellation Now in Service

India to launch satellite next week to fix malfunctioning navigation system

Japan launches satellite for better GPS system

FARM NEWS
Poland accuses EU's top court of bias in primeval forest case

Chocolate industry driving deforestation of Ivory Coast: report

Hidden Inca treasure: Remarkable new tree genus discovered in the Andes

Deforestation long overlooked as contributor to climate change

FARM NEWS
A sweeter way to make green products

How to draw electricity from the bloodstream

Scientists make methanol using air around us

Could switchgrass help China's air quality?

FARM NEWS
Defects in next-generation solar cells can be healed with light

Dubai awards contract for final phase of solar park

Engineers develop tools to share power from renewable energy sources during outages

Obama-era solar power program reaches goal early

FARM NEWS
Kimberly-Clark next U.S. company to draw more on renewables

UK wind electricity cheaper than nuclear: data

Last of the 67 turbines for a British wind farm installed

Light-based method makes remote wind measurements easier and more accurate

FARM NEWS
First-ever U.S. coal shipment arrives in Ukraine

Rio completes Australia coal mines sale to China's Yancoal

In a first, U.S. ships coal to Ukraine

China to strictly control new coal-fired power capacity

FARM NEWS
New wave of leaders step into breach for jailed HK democracy activists

China tightens restrictions on religious freedom

Pregnant woman's suicide roils China

Student backlash in Hong Kong independence row









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.