Subscribe free to our newsletters via your
. Farming News .




FARM NEWS
Protecting crops from radiation-contaminated soil
by Staff Writers
Tokyo, Japan (SPX) Mar 06, 2015


(Top) Compared to controls, plants grown in cesium-contaminated soil show less growth and unhealthy leaves. (Bottom) Adding CsTolen A to the soil dramatically improved the growth of plants grown in cesium-contaminated soil. Image courtesy RIKEN.

Almost four years after the accident at the Fukushima Daiichi Nuclear Power Plant in Japan, farmland remains contaminated with higher-than-natural levels of radiocesium in some regions of Japan, with cesium-134 and cesium-137 being the most troublesome because of the slow rate at which they decay. In a study published in Scientific Reports, a group at the RIKEN Center for Sustainable Resource Science in Japan led by Ryoung Shin has identified a chemical compound that prevents plants from taking up cesium, thus protecting them-and us-from its harmful effects.

Although cesium has no beneficial function in plants, it is readily absorbed by plants in contaminated soil due to its water solubility and its similarity to potassium, a critical plant nutrient. After being absorbed, it continues to compete with potassium inside plant cells, disrupting physiological processes and causing major retardation in plant growth. Because of this, the research team focused their efforts on finding a way to prevent cesium uptake.

First, they used seedlings from the model plant Arabidopsis thaliana and tested 10,000 synthetic compounds to determine if any could reverse the harmful effects of cesium. The effects of each compound were quantified with a scoring scale, and after several screenings, they had found five compounds that made plants highly tolerant to cesium.

Next they looked at how these five compounds - termed CsTolen A-E - produced their effects. They found that when Arabidopsis was grown in cesium-containing liquid media with CsTolen A, more cesium remained in the liquid medium and much less was found in the plants.

Importantly, the concentration of CsTolen A needed for this effect did not prevent the plants from absorbing the potassium that they need to grow. Further tests showed that rather than helping cells to expel cesium after it has been initially absorbed, CsTolen A acted to prevent cesium from entering the roots.

Quantum mechanical modeling indicated that although CsTolen A likely binds to other alkali metal ions, such as potassium and sodium, it should preferentially bind to cesium in aqueous solutions. This was confirmed by testing in which CsTolen A did not reverse sodium-induced or potassium deficiency-induced growth retardation, indicating that its effects appear to be specific to cesium.

Most importantly, when plants were germinated and grown in cesium-contaminated soil, applying CsTolen A significantly reduced the amount of cesium absorption and resulted in greater plant growth.

As Japan prepares to mark the fourth year since the events of March 2011, lead author Eri Adams notes that, "we think our findings shed some light on the possibility of using chemicals to prevent agricultural products from being contaminated."

This technique is called phytostabilization, and Adams adds that, "unlike other methods such as genetic modification, use of chemicals is a powerful tool that can alter plant responses to the environment regardless of their species, which is especially true in the case of CsTolen A because it binds to cesium before it can enter the plants."

Shin's research unit is devoted to finding solutions to several environmental and agricultural problems through studying the mechanisms of nutrient uptake. Not only will the current findings help plants, but by reducing the amount of radiocesium that enters them, it should also ensure the safety of agricultural products grown in contaminated soil.

As decontaminating large areas of farmland is a difficult venture at best, CsTolen A could be a game saver for regions affected by radiocesium contamination.

Reference: Adams E, Chaban V, Khandelia H, Shin R (2015). Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake. Scientific Reports. doi: 10.1038/srep08842


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
RIKEN
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FARM NEWS
Aggressive plant fungus threatens wheat production
Norwich, UK (SPX) Feb 27, 2015
The spread of exotic and aggressive strains of a plant fungus is presenting a serious threat to wheat production in the UK, according to research published in Genome Biology. The research uses a new surveillance technique that could be applied internationally to respond to the spread of a wide variety of plant diseases. Wheat is a critical staple and provides 20% of the calories and over 2 ... read more


FARM NEWS
3-D Views of February Snow Storms from GPM

Africa, From a CATS Point of View

New NASA Soil Moisture Mapper Completes Key Milestone

NASA releases first precipitation map from GPM mission

FARM NEWS
Study of Atmospheric 'Froth' May Help GPS Communications

Indian company to produce Sagem navigational system

Tehran keeps tighter leash on strays with GPS collars

China, Russia strengthen satellite navigation cooperation

FARM NEWS
Munching bugs thwart eager trees, reducing the carbon sink

Greenpeace rebukes paper giant over farmer's death

Modern logging techniques benefit rainforest wildlife

Massive amounts of Saharan dust fertilize the Amazon rainforest

FARM NEWS
Step change for screening could boost biofuels

Novel pretreatment could cut biofuel costs by 30 percent or more

New catalyst to create chemical building blocks from biomass

Electricity from biomass could make western US carbon-negative

FARM NEWS
Testing at NREL aids solar power in Hawaii

New material to produce clean energy

NREL takes first in-depth look at solar project completion timelines

Supersonic electrons could produce future solar fuel

FARM NEWS
Wind energy: TUV Rheinland supervises Senvion sale

Bright spot for wind farms amid RET gloom

Allianz acquire OX2 wind farm in northern Sweden

No surprises for wind industry in NHMRC report

FARM NEWS
China utilizing coal mine emissions for power

FARM NEWS
Hong Kong police arrest 33 after anti-mainland march

New media, New China: Xinhua relaunch on barred networks

China official jailed for 17 years over jade bribes

China removes 'thoughts' from terror definition: reports




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.