Plants can smell, now researchers know how by Staff Writers Tokyo, Japan (SPX) Jan 24, 2019
Plants don't need noses to smell. The ability is in their genes. Researchers at the University of Tokyo have discovered the first steps of how information from odor molecules changes gene expression in plants. Manipulating plants' odor detection systems may lead to new ways of influencing plant behavior. The discovery is the first to reveal the molecular basis of odor detection in plants and was more than 18 years in the making. "We started this project in 2000. Part of the difficulty was designing the new tools to do odor-related research in plants," said Professor Kazushige Touhara of the University of Tokyo. Plants detect a class of odor molecules known as volatile organic compounds, which are essential for many plant survival strategies, including attracting birds and bees, deterring pests, and reacting to disease in nearby plants. These compounds also give essential oils their distinctive scents. Touhara's team exposed tobacco cells and 4-week-old tobacco plants to different volatile organic compounds. They discovered that odor molecules change gene expression by binding to other molecules called transcriptional co-repressors that can turn genes on or off. In plants, the odor molecules must move into the cell and accumulate before they affect plant behavior. In animals, odor molecules are recognized by receptors on the outside of cells in the nose and immediately trigger a signaling pathway to recognize the odor and change behavior. "Plants can't run away, so of course they react to odors more slowly than animals. If plants can prepare for environmental change within the same day, that is probably fast enough for them," said Touhara. Speed is unnecessary for plants, but they may be able to recognize a much greater variety of odor molecules. "Humans have about 400 odor receptors. Elephants have about 2,000, the largest number in animals. But based on how many transcription factor genes are in plants, plants may be able to detect many more odors than animals," said Touhara. Touhara imagines applying these discoveries to influence crop quality or character without the complications of gene editing or pesticide use. Farmers could spray their fields with an odor associated with a desired plant behavior. For example, an odor that triggers plants to change the taste of their leaves to deter insects. "All creatures communicate with odor. So far, our lab has studied within-species communication: insect to insect, mouse to mouse, human to human. This understanding of how plants communicate using odor will open up opportunities to study 'olfactory' communication between all creatures," said Touhara. The University of Tokyo research team made their discoveries using tobacco plants, a common model organism. They expect research teams around the world will soon verify the discovery in many other types of plants.
Research Report: Transcription regulators involved in responses to volatile organic compounds in plants
Scientists discover new 'architecture' in corn Baton Rouge LA (SPX) Jan 22, 2019 New research on the U.S.'s most economically important agricultural plant - corn - has revealed a different internal structure of the plant than previously thought, which can help optimize how corn is converted into ethanol. "Our economy relies on ethanol, so it's fascinating that we haven't had a full and more precise understanding of the molecular structure of corn until now," said LSU Department of Chemistry Assistant Professor Tuo Wang, who led this study that will be published on Jan. 21 in N ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |