![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Toronto, Canada (SPX) Oct 12, 2015
Engineering and biology professors at the University of Toronto have developed a new strategy for helping African farmers fight a parasitic plant that devastates crops. Plants in the genus Striga, also known as witchweed, act as parasites of other plants, tapping into their root systems and hijacking them for their own purposes. Though their purple flowers are pretty to look at, a field full of Striga plants is in fact a nightmare for a farmer who wants to grow corn, sorghum, rice or other subsistence crops. The problem affects more than 100 million people across 25 countries in sub-Saharan Africa. U of T chemical engineering professor Alexei Savchenko, along with professor Peter McCourt in the Department of Cell and Systems Biology, have created a genetically engineered plant biosensor, a tool that will help them hunt for molecules that could prevent Striga infestations. The duo has been studying the biochemical pathways used by Striga to attack other plants. "When crops start to germinate, they emit small chemicals into the soil," says Savchenko. These hormones attract beneficial fungi that help the crop obtain nutrients. Unfortunately, Striga plants have also evolved to recognize these signals, and to speed up their own germination so that they are ready to pounce once the crop starts developing roots. Savchenko and McCourt hope to outwit Striga by tricking its chemical senses. Their idea is to spray the ground with a chemical similar to the plant hormones that Striga is primed to detect. "You would spread this false signal and cause the Striga to germinate," says Savchenko. "Then you would destroy the Striga and plant the crops in a clean field." But in order to determine what false signal to send, the scientists first needed to better understand how Striga detects the plant hormones. In research published in the leading journal Science, the team identified 11 protein-based hormone receptors present within Striga. Savchenko and his team isolated these receptors and mapped their 3D structure using a technique called x-ray crystallography. This allowed McCourt's group to identify which receptors are most sensitive to the hormones and thus the most important ones to focus on. The next step was to clone and introduce the most sensitive receptor into Arabidopsis thaliana, a small plant commonly used as a model organism in biology studies. Unlike Striga, Arabidopsis is not a parasite, so it's much easier to grow, yet the genetically engineered plant now reacts to crop hormones and their chemical cousins in the same way that Striga would. "It is a very good tool to identify chemicals that will have the same effect as the hormones that cause Striga to germinate," says Savchenko. McCourt and Savchenko are now screening a variety of chemicals in search of ones that would mimic the plant hormones. Their genetically engineered Arabidopsis could also be of great value to companies that produce agricultural products, who might be interested in screening their existing chemical libraries. "We have shown that this receptor is very important for Striga's parasitic life style, and by making it part of a plant biosensor we provided all the components that people can use [to find a solution]," says Savchenko. With luck, the scourge of witchweed will soon become a much more manageable problem. Research paper "Structure-function analysis identifies highly sensitive strigolactone receptors in Striga" published in the leading journal Science.
Related Links University of Toronto Faculty of Applied Science and Engineering Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |