Energy News  
FARM NEWS
Pineapple genome offers insight into photosynthesis in drought-tolerant plants
by Staff Writers
Champaign IL (SPX) Nov 09, 2015


The pineapple genome offers new insights into the evolution of the pineapple and of crop plants like sorghum and rice. Image courtesy Robert Paull, University of Hawaii. For a larger version of this image please go here.

By sequencing its genome, scientists are homing in on the genes and genetic pathways that allow the juicy pineapple plant to thrive in water-limited environments. The new findings, reported in the journal Nature Genetics, also open a new window on the complicated evolutionary history of grasses like sorghum and rice, which share a distant ancestor with pineapple.

Humans have cultivated pineapple for more than 6,000 years, beginning in present-day southwest Brazil and northeast Paraguay. Today, more than 85 countries produce about 25 million metric tons of pineapple fruit each year, with a gross production value approaching $9 billion.

Like many plants, the ancestors of pineapple and grasses experienced multiple doublings of their genomes. Tracking the remnants of these "whole-genome duplications" in different plant species helps researchers trace their shared - and independent - evolutionary histories.

"Our analysis indicates that the pineapple genome has one fewer whole genome duplication than the grasses that share an ancestor with pineapple, making pineapple the best comparison group for the study of cereal crop genomes," said University of Illinois plant biology professor Ray Ming, who led the multi-institutional pineapple genome sequencing effort. The work uncovered evidence of two whole-genome duplications in the pineapple's history, and validated previous findings of three such duplications in grasses.

Photosynthesis converts solar energy to chemical energy, allowing plants to build the tissues that sustain life on Earth. Pineapple makes use of a special type of photosynthesis, called crassulacean acid metabolism, or CAM, which has evolved independently in more than 10,000 plant species. Pineapple is the most economically valuable plant among those 10,000 species, Ming said.

Most crop plants use a different type of photosynthesis, called C3. "CAM plants use only 20 percent of the water used by typical C3 crop plants, and CAM plants can grow in dry, marginal lands that are unsuited for most crop plants," Ming said.

A closer look at the pineapple genome revealed that some genes that contribute to CAM photosynthesis are regulated by the plant's circadian clock genes, which allow plants to differentiate day and night and adjust their metabolism accordingly.

"This is the first time scientists have found a link between regulatory elements of CAM photosynthesis genes and circadian clock regulation," Ming said. "This makes sense, because CAM photosynthesis allows plants to close the pores in their leaves during the day and open them at night. This contributes to pineapple's resilience in hot, arid climates, as the plant loses very little moisture through its leaves during the day."

CAM photosynthesis allows the plant to absorb and "fix carbon dioxide into molecules during the night, concentrate it in its leaves and release it the next day for photosynthesis," Ming said.

"Drought is responsible for the majority of global crop loss, so understanding the mechanisms that plants have evolved to survive water stress is vital for engineering drought tolerance in crop species," the researchers wrote. "CAM plants can keep their stomata closed during the daytime... greatly reducing water loss."

CAM and C4 photosynthesis, which is common among grasses, use many of the same enzymes to concentrate carbon dioxide in plant leaves, the researchers report. Other plants, such as soybeans, use the less efficient C3 photosynthesis, which lacks the CO2-concentrating mechanisms of C4 and CAM photosynthesis.

The team discovered that CAM photosynthesis evolved by reconfiguring molecular pathways involved in C3 photosynthesis.

"All plants contain the necessary genes for CAM photosynthesis, and the evolution of CAM simply requires rerouting of pre-existing pathways," they wrote.

Understanding the evolution of these different types of photosynthesis will help scientists in their efforts to develop more productive, drought-tolerant varieties of essential crops, Ming said.

For example, the U.S. Department of Energy has funded a project to explore the genetic mechanisms that enable CAM photosynthesis and drought tolerance in desert-adapted plants - with the aim of introducing those traits to potential biofuels crops.

Adapting food crops to be more tolerant of drought will also help humans adapt to climate change, Ming said.

"Higher water-use efficiency is a highly desirable trait, given the need to double food production by 2050 in the context of a changing climate," he said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois at Urbana-Champaign
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FARM NEWS
Did Dust Bowl's ravages end in the 1940s
Knoxville TM (SPX) Nov 04, 2015
A recent study led by the University of Tennessee, Knoxville, Goodrich Chair of Excellence Thanos Papanicolaou could very well change the way we view the health of our nation's soil, even potentially altering history books. The paper, soon-to-be published in the Journal of Geophysical Research--Biogeosciences, focuses on modeling carbon budgets in agricultural areas. A carbon budget is one ... read more


FARM NEWS
RapidScat Celebrates One-Year Anniversary

Excitement Grows as NASA Carbon Sleuth Begins Year Two

NASA to fly, sail north to study plankton-climate change connection

Curtiss-Wright and Harris bring digital map solutions to rugged systems

FARM NEWS
Orbital ATK products enable improved global positioning on Earth

Galileo pair preparing for December launch

GPS IIF satellite successfully launched from Cape Canaveral

U.S. Air Force prepares to launch next GPS IIF satellite

FARM NEWS
Treetop leaves of tall trees store extra water

Peru creates huge national park in Amazon basin

OECD warns Brazil on environment, economy risks

After 5,000 years, Britian's Fortingall Yew is turning female

FARM NEWS
Energy-efficient reaction drives ORNL biofuel conversion technology

Vast energy value in human waste

Chesapeake Bay Seed Capital Fund invests $150,000 in Manta Biofuel

US Ethanol Producers Looking at Thin Profit Margins for 2015-16

FARM NEWS
Go green to save the world and the world economy: OECD

Trina Solar hits record 21.25% efficiency for multi-crystalline silicon cell

Recurrent Energy secures financing for 60MW solar project

Western Region ACORE report for renewables released

FARM NEWS
New Jersey is next for offshore wind energy

Scotland hosting new type of offshore wind program

E.ON finishes German wind farm

Adwen and IWES sign agreement for the testing of 8MW turbine

FARM NEWS
Few bright spots for U.S. coal

Australian green group to challenge India-backed coal mine

Greenpeace barred from bidding for Vattenfall's German coal operations

Oldest Romanian mine closes after 156 years

FARM NEWS
China two-child policy to add 3 million babies a year: officials

China artist comes out... as French

The loneliness of China's long-serving enforcers

China's 'leftover women' fight back: Fincher









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.