No more brown apples by Staff Writers Vienna, Austria (SPX) Nov 17, 2015
Everybody knows this phenomenon: After slicing an apple, it loses its appetising white colour very quickly, which does not only scare off children. Although browned fruit is not harmful, we unwillingly eat "old-looking" fruit and throw away huge quantities of fresh products each year. The reason for this ugly colouring is a chemical reaction, which is due to the catalysis caused by the enzyme tyrosinase. Actually, this "browning" is a defence mechanism of plants. "There are caterpillars which are starving to death with a full stomach, because they are no longer able to digest the material which is altered by the tyrosinase", explains Matthias Pretzler of the Department of Biophysical Chemistry at the University of Vienna, who was involved in the structure elucidation of the first plant tyrosinase together with his colleagues and teamleader Annette Rompel. The research results have now been published in the internationally-renowned journal "Angewandte Chemie" (Applied Chemistry).
From mushroom to the walnut leaf "In the 1990s we were far away from handling the enzyme, but with the development of modern chromatographic and crystallographic methods there are better opportunities available to us today", says Annette Rompel, who already tried to isolate and purify the enzyme from walnut leaves. After the successful characterisation and crystallisation of mushroom tyrosinase in 2014, the walnut leaf is the centre of her research nowadays. "Walnut leaves make the skin become brown, which proves that they contain a high concentration of the enzyme and represent an attractive source for our research", she explains.
Old theory is replaced by new findings Both enzymes are very similar as far as the structure is concerned. "This raises the question how the results of the individual reactivities differ from each other", adds Aleksandar Bijelic. It was previously assumed that tyrosinase differs from catechol oxidase by one single amino acid, which is virtually positioned over the active centre like a "plug" and thus responsible for the different reactivities. After the scientists of the University of Vienna have crystallised the first plant tyrosinase, they discovered that both enzyme classes contain this "plug" in plants. "Our conclusion is that we have to change the perspective", says the PhD student.
Developing new perspectives Thus, the scientists "zoomed out" a little bit and focused towards the amino acids at the second shell, which is located at the entrance of the active site. "In fact, we learned that these amino acids play a more important role than previously assumed."
Understanding the underlying principle
Suppressing the activation of browning "If we are successful in suppressing the first activating step, this will be an enormous success for science", adds Annette Rompel: "It would mean that a banana would not turn brown anymore if you squeezed it in your bag." Still, it would of course rot. "It will most probably rot even faster", concludes Matthias Pretzler. Publication in "Angewandte Chemie" A. Bijelic, M. Pretzler, C. Molitor, F. Zekiri, A. Rompel: The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of "Substrate-Guiding Residues" for Enzymatic Specificity. Published online October 16, 2015.
Related Links University of Vienna Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |