Newly characterized protein has potential to save US farmers millions annually by Staff Writers Champaign IL (SPX) Apr 02, 2017
Instead of turning carbon into food, many plants accidentally make a plant-toxic compound during photosynthesis that is recycled through a process called photorespiration. University of Illinois and USDA/ARS researchers report in Plant Cell the discovery of a key protein in this process, which they hope to manipulate to increase plant productivity. "Photorespiration is essential for C3 plants, such as rice and soybeans, but operates at the massive expense of fixed carbon and energy," said project lead Don Ort, USDA/ARS scientist and the Robert Emerson Professor of Plant Biology at Illinois. "We have identified photorespiration as a primary target to improve photosynthetic efficiency as a strategy to improve crop yield. Successfully re-engineering photorespiration requires deep knowledge of the process, for which understanding of transport steps is most lacking." Related to a family of transport proteins that move bile around in animals, the newly discovered role of the plant protein Bile Acid Sodium Symporter 6 (BASS6) is to transport the toxic product glycolate out of the chloroplast where it is recycled into a useful sugar molecule (glycerate) through a series of chemical reactions, which release carbon dioxide and harmful ammonia while sacrificing energy. Since the 1960s, researchers have known that plant chloroplasts export two molecules of glycolate to recover one molecule of glycerate. However, the chemical equation did not add up until now with the discovery of the function of BASS6, the second glycolate transport protein to be described since the glycolate/glycerate exchange transporter "PLGG1" was described in 2013. "Now we're going to try to make a shortcut to avoid all the wasteful steps in photorespiration," said Paul South, a USDA/ARS postdoctoral researcher who led this work at the Carl R. Woese Institute for Genomic Biology at Illinois. "We're building a shortcut to quickly process glycolate into glycerate instead of letting BASS6 and PLGG1 take the country roads. One of the benefits of the shortcut is that the plants don't produce ammonia, so they don't have to spend a lot of energy re-fixing the ammonia." "We could feed around 200 million people with the calories lost to photorespiration each year just in the Midwestern United States," said co-author author Berkley Walker, an Alexander von Humboldt Postdoctoral Fellow at the University of Dusseldorf, citing his recently published simulations. "While we can't get all that yield back, even saving 5% of the energy in lost in photorespiration would be worth millions of dollars annually." The paper "Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana" is published by Plant Cell (DOI: 10.1105/tpc.16.00775). Co-authors include Amanda Cavanagh at Illinois and Vivien Rolland and Murray Badger at the Australian National University.
Vancouver, Canada (SPX) Apr 02, 2017 Dairy cows housed indoors want to break curfew and roam free, suggests new research from the University of British Columbia, published in Scientific Reports. The study measured how much work dairy cows will do to access pasture, by pushing on a weighted gate. The cows worked hard to access pasture, especially at night. As a comparison, the researchers also measured how much weight the cows ... read more Related Links Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |