Energy News  
FARM NEWS
New type of photosynthesis discovered
by Staff Writers
London, UK (SPX) Jun 15, 2018

illustration only

The discovery changes our understanding of the basic mechanism of photosynthesis and should rewrite the textbooks.

It will also tailor the way we hunt for alien life and provide insights into how we could engineer more efficient crops that take advantage of longer wavelengths of light.

The discovery, published in Science, was led by Imperial College London, supported by the BBSRC, and involved groups from the ANU in Canberra, the CNRS in Paris and Saclay and the CNR in Milan.

The vast majority of life on Earth uses visible red light in the process of photosynthesis, but the new type uses near-infrared light instead. It was detected in a wide range of cyanobacteria (blue-green algae) when they grow in near-infrared light, found in shaded conditions like bacterial mats in Yellowstone and in beach rock in Australia.

As scientists have now discovered, it also occurs in a cupboard fitted with infrared LEDs in Imperial College London.

Photosynthesis beyond the red limit
The standard, near-universal type of photosynthesis uses the green pigment, chlorophyll-a, both to collect light and use its energy to make useful biochemicals and oxygen. The way chlorophyll-a absorbs light means only the energy from red light can be used for photosynthesis.

Since chlorophyll-a is present in all plants, algae and cyanobacteria that we know of, it was considered that the energy of red light set the 'red limit' for photosynthesis; that is, the minimum amount of energy needed to do the demanding chemistry that produces oxygen. The red limit is used in astrobiology to judge whether complex life could have evolved on planets in other solar systems.

However, when some cyanobacteria are grown under near-infrared light, the standard chlorophyll-a-containing systems shut down and different systems containing a different kind of chlorophyll, chlorophyll-f, takes over.

Until now, it was thought that chlorophyll-f just harvested the light. The new research shows that instead chlorophyll-f plays the key role in photosynthesis under shaded conditions, using lower-energy infrared light to do the complex chemistry. This is photosynthesis 'beyond the red limit'.

Lead researcher Professor Bill Rutherford, from the Department of Life Sciences at Imperial, said: "The new form of photosynthesis made us rethink what we thought was possible. It also changes how we understand the key events at the heart of standard photosynthesis. This is textbook changing stuff."

Preventing damage by light
Another cyanobacterium, Acaryochloris, is already known to do photosynthesis beyond the red limit. However, because it occurs in just this one species, with a very specific habitat, it had been considered a 'one-off'. Acaryochloris lives underneath a green sea-squirt that shades out most of the visible light leaving just the near-infrared.

The chlorophyll-f based photosynthesis reported today represents a third type of photosynthesis that is widespread. However, it is only used in special infrared-rich shaded conditions; in normal light conditions, the standard red form of photosynthesis is used.

It was thought that light damage would be more severe beyond the red limit, but the new study shows that it is not a problem in stable, shaded environments.

Co-author Dr Andrea Fantuzzi, from the Department of Life Sciences at Imperial, said: "Finding a type of photosynthesis that works beyond the red limit changes our understanding of the energy requirements of photosynthesis. This provides insights into light energy use and into mechanisms that protect the systems against damage by light."

These insights could be useful for researchers trying to engineer crops to perform more efficient photosynthesis by using a wider range of light. How these cyanobacteria protect themselves from damage caused by variations in the brightness of light could help researchers discover what is feasible to engineer into crop plants.

Textbook-changing insights
More detail could be seen in the new systems than has ever been seen before in the standard chlorophyll-a systems. The chlorophylls often termed 'accessory' chlorophylls were actually performing the crucial chemical step, rather than the textbook 'special pair' of chlorophylls in the centre of the complex.

This indicates that this pattern holds for the other types of photosynthesis, which would change the textbook view of how the dominant form of photosynthesis works.

Dr Dennis Nurnberg, the first author and initiator of the study, said: "I did not expect that my interest in cyanobacteria and their diverse lifestyles would snowball into a major change in how we understand photosynthesis. It is amazing what is still out there in nature waiting to be discovered."

Peter Burlinson, lead for frontier bioscience at BBSRC - UKRI says, "This is an important discovery in photosynthesis, a process that plays a crucial role in the biology of the crops that feed the world. Discoveries like this push the boundaries of our understanding of life and Professor Bill Rutherford and the team at Imperial should be congratulated for revealing a new perspective on such a fundamental process."

Research paper


Related Links
Imperial College London
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FARM NEWS
Organic insect deterrent for agriculture
Munich, Germany (SPX) Jun 12, 2018
Traditional insecticides are killers: they not only kill pests, they also endanger bees and other beneficial insects, as well as affecting biodiversity in soils, lakes, rivers and seas. A team from the Technical University of Munich (TUM) has now developed an alternative: A biodegradable agent that keeps pests at bay without poisoning them. "It's not just about the bees, it's about the survival of humanity," says Professor Thomas Bruck, who heads the Werner Siemens Chair of Synthetic Biotechnology ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
GRACE-FO turns on 'range finder,' sees mountain effects

Wind satellite shows off

20 Years of Earth Data Now at Your Fingertips

NASA Soil Moisture Data Advances Global Crop Forecasts

FARM NEWS
Woman drowns in Prague drains playing GPS treasure hunt

GMV competing to develop the Galileo Ground Control Segment in brand new premises

Research shows how 'navigational hazards' in metro maps confuse travelers

UK set to demand EU repayment in Brexit satellite row

FARM NEWS
'Shocking' die-off of Africa's oldest baobabs

New research finds tall and older Amazonian forests more resistant to droughts

Zangbeto: voodoo saviour of Benin's mangroves

New technique reveals details of forest fire recovery

FARM NEWS
Scientists sustainably 3D print large objects out of cellulose

How to suck carbon dioxide from the sky for fuels and more

Polymer researchers discover path to sustainable and biodegradable polyesters

'Deforestation-free' palm oil not as simple as it sounds

FARM NEWS
Flexible solar cells: Will they someday power your devices?

Optimized mounting enables shorter solar power purchase deals for the mining sector

Freedom Solar steers Austin Subaru dealership into fast lane of sustainability

French energy company ENGIE claims renewable edge

FARM NEWS
Cryptocurrency blowing in the wind as mine opens in Estonia

U.S. Atlantic states eye offshore wind leadership

European wind energy generation potential in a warmer world

New York to world's largest offshore wildlife aerial survey

FARM NEWS
Rescuers save 23 workers trapped in China mine, 11 others dead

Dutch to close two oldest coal-fired plants by 2025

U.S. wants input on coal plants of the future

Two Polish miners killed, three missing after quake

FARM NEWS
Tight squeeze for Hong Kong's young professionals

Chinese vase found in attic sells for 16.2 million euros

Hong Kong golf course row exposes city's social divide

Hong Kong jails top independence leader for six years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.