. Energy News .




FARM NEWS
Major breakthrough in deciphering bread wheat's genetic code
by Staff Writers
Swindon UK (SPX) Nov 30, 2012


Wheat has a global output of over 680million tonnes; bread wheat (Triticum aestivum) provides over a fifth of the calories that we eat. As the global population and the demand for wheat rises, major efforts are underway to improve productivity by producing varieties that can withstand adverse weather and disease, and that provide greater yields. However, until now the very large size and complexity of the genome have been significant barriers to crop improvement.

Scientists have unlocked key components of the genetic code of one of the world's most important crops. The first analysis of the complex and exceptionally large bread wheat genome, published in Nature, is a major breakthrough in breeding wheat varieties that are more productive and better able to cope with disease, drought and other stresses that cause crop losses.

The identification of around 96,000 wheat genes, and insights into the links between them, lays strong foundations for accelerating wheat improvement through advanced molecular breeding and genetic engineering.

The research contributes to directly improving food security by facilitating new approaches to wheat crop improvement that will accelerate the production of new wheat varieties and stimulate new research. The analysis comes just two years after UK researchers finished generating the sequence.

The project was led by Neil Hall, Mike Bevan, Keith Edwards, Klaus Mayer, from the University of Liverpool, the John Innes Centre, the University of Bristol, and the Institute of Bioinformatics and Systems Biology, Helmholtz-Zentrum, Munich, respectively, and Anthony Hall at the University of Liverpool. W. Richard McCombie at Cold Spring Harbor Laboratory, and Jan Dvorak at the Univerisity of California, Davis, led the US contribution to the project.

The team sifted through vast amounts of DNA sequence data, translating the sequence into something that scientists and plant breeders can use effectively. All of their data and analyses were freely available to users world-wide.

Professor Neil Hall said: "The raw data of the wheat genome is like having tens of billions of scrabble letters; you know which letters are present, and their quantities, but they need to be assembled on the board in the right sequence before you can spell out their order into genes."

"We've identified about 96,000 genes and placed them in an approximate order. This has made a strong foundation for both further refinement of the genome and for identifying useful genetic variation in genes that scientists and breeders can use for crop improvement."

Minister for Universities and Science David Willetts said: "This groundbreaking research is testament to the excellence of Britain's science base and demonstrates the capability we want to build on through the agri-tech strategy currently being developed.

"The findings will help us feed a growing global population by speeding up the development of new varieties of wheat able to cope with the challenges faced by farmers worldwide."

Wheat has a global output of over 680million tonnes; bread wheat (Triticum aestivum) provides over a fifth of the calories that we eat. As the global population and the demand for wheat rises, major efforts are underway to improve productivity by producing varieties that can withstand adverse weather and disease, and that provide greater yields. However, until now the very large size and complexity of the genome have been significant barriers to crop improvement.

Klaus Mayer said: "Bread wheat is a complex hybrid, composed of the complete genomes of three closely related grasses. This makes it very complex and large; in total it is almost five times bigger than the human genome."

"Because of this, we took a novel approach to analysing the data, and we have been successful in turning it into accessible and useful resources that will accelerate breeding and the discovery of varieties with improved performance - for example better disease resistance and stress tolerance."

Breeders and researchers are now able to select plants with desirable combinations of genes using the genetic landmarks in the wheat genome. These landmarks can be incorporated directly into breeding programmes to make more reliable and deliberate choices of wheat varieties that exhibit specific traits.

Professor Mike Bevan said: "This research enables breeders and researchers to generate huge numbers of genetic markers to identify regions of the wheat genome carrying useful traits. This is one of the key practical uses of the genome resources we created.

"With markers, breeders can track the genetic makeup of plants when new varieties are being bred. Plants lacking the desired traits can be eliminated more efficiently, and those with desired characteristic identified more quickly, speeding up the production of new varieties from a far wider range of wheat varieties, including wild relatives that have many useful traits such as disease and stress tolerance."

The researchers made this rapid progress by developing a new strategy that compared wheat's genetic sequences to known grass genes (for example from rice and barley), and also comparing these to the simpler genomes of wheat's ancestors. This revealed a highly dynamic genome that has undergone genetic loss as a consequence of domestication.

Professor Keith Edwards commented: "Since 1980, the rate of increase in wheat yields has declined. Analysis of the wheat genome sequence data provides a new and very powerful foundation for breeding future generations of wheat more quickly and more precisely, to help address this problem."

The analysis is already being used in research funded by the Biotechnology and Biological Sciences Research Council (BBSRC) to introduce a wider range of genetic variation into commercial cultivars and make use of wild wheat's untapped genetic reservoirs that could help improve tolerance to diseases and the effects of climate change. The wheat breeding community and seed suppliers have welcomed the research.

The sequence data has been deposited at the European Nucleotide Archive and is also available from databases in the UK and Germany. Researchers from the European Bioinformatics Institute, Kansas State University, and the United Sates Department of Agriculture were also vital to the project's success. The research was possible thanks to major funding was from the Biotechnology and Biological Sciences Research Council (BBSRC), the EU and the National Science Foundation (NSF).

Professor Douglas Kell, BBSRC Chief Executive, said: "In the face of this year's wheat crop losses, and worries over the impact on prices for consumers, this breakthrough in our understanding of the bread wheat genome could not have come at a better time.

This modern strategy is a key component to supporting food security and gives breeders the tools to produce more robust varieties with higher yields. It will help to identify the best genetic sequences for use in breeding programmes."

"The complexity of the wheat genome means that there is still more to learn and international efforts to complete a full sequence are vital to further maximise the potential of new wheat varieties."

Following this announcement, BBSRC has urged for a redoubling of efforts by the International Wheat Initiative and the associated International Wheat Genome Sequencing Expert Group to promote completion of the full sequence to progress further advances in wheat varieties at the earliest opportunity.

.


Related Links
Biotechnology and Biological Sciences Research Council
International Wheat Initiative
International Wheat Genome Sequencing Expert Group
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





FARM NEWS
Chinese industrialist buys top wine estate in landmark deal
Bordeaux (AFP) Nov 29, 2012
A Chinese industrialist has completed the landmark purchase of Chateau Bellefont-Belcier, a leading estate in France's prestigious Saint Emilion wine-making area, sources involved in the sale said Thursday. The property is the first of its rank - Grand Cru Classe (classified growth) - to be acquired in what has been a wave of Chinese investment in the Bordeaux region. The new owner is ... read more


FARM NEWS
NASA's TRMM Satellite Confirms 2010 Landslides

NASA's Tropical Rainfall Measuring Mission Turns 15

GOES-R Satellite Program Undergoes Successful Review

Tracking Pollution from Outer Space

FARM NEWS
GTX Gets Approval For Custom Two-Way GPS Tracking Devices On Planes

East Riding Of Yorkshire Council Selects Ctrack For Specialist Vehicle Tracking Solution

Researchers Use GPS Tracking to Monitor Crab Behavior

US Navy, Raytheon receive Pentagon engineering award for GPS-guided precision landing program

FARM NEWS
Ash dieback poses threat

China demand fuels illegal logging: report

New study shows how climate change could affect entire forest ecosystems

Brazil says Amazon deforestation at record low

FARM NEWS
Garbage bug may help lower the cost of biofuel

Tiny algae shed light on photosynthesis as a dynamic property

Algae held captive and genes stolen in crime of evolution

Marine algae seen as biofuel resource

FARM NEWS
British firm to build 'Africa's biggest solar plant'

The Future Looks Bright: ONR, Marines Eye Solar Energy

The Installed Price of PV Systems in the U.S. Continues to Decline at a Rapid Pace

Upsolar Modules Earn High Marks for Long-Term Performance

FARM NEWS
US Navy, DoD, Developer Announce Wind Farm Agreement

Britain: Higher energy bills 'reasonable'

Areva commits to Scotland turbine plant

AREVA deploys its industrial plan to produce a 100 percent French wind power technology

FARM NEWS
China mine blast toll rises to 23

China mine blast kills 18: state media

US shale gas drives up coal exports

Coal investment in Queensland unlikely

FARM NEWS
British ministers 'banned from meeting Dalai Lama'

Blind Chinese lawyer's nephew jailed for 3 years

China dissident brands nephew's conviction 'revenge'

China jails local government 'interceptors': report




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement