. Energy News .




.
FARM NEWS
Key part of plants' rapid response system revealed
by Diana Lutz for WUSTL News
St. Louis, MO (SPX) Jun 21, 2012

Many of the effects of plant hormones are familiar to gardeners. One is the sudden growth of a floral stalk that signals the end of the production of tasty leaves by spinach or lettuce plants. This growth spurt, called bolting, is caused by a gibberellin plant hormone.

Science has known about plant hormones since Charles Darwin experimented with plant shoots and showed that the shoots bend toward the light as long as their tips, which are secreting a growth hormone, aren't cut off. But it is only recently that scientists have begun to put a molecular face on the biochemical systems that modulate the levels of plant hormones to defend the plant from herbivore or pathogen attack or to allow it to adjust to changes in temperature, precipitation or soil nutrients.

Now, a cross-Atlantic collaboration between scientists at Washington University in St. Louis, and the European Synchrotron Radiation Facility and the European Molecular Biology Laboratory, both in Grenoble, France, has revealed the workings of a switch that activates plant hormones, tags them for storage or marks them for destruction.

The research appeared online in Science Express and will be published in a forthcoming issue of Science.

"The enzymes are cellular stop/go switches that turn hormone responses on and off," says Joseph Jez, PhD, associate professor of biology in Arts and Sciences at WUSTL and senior author on the paper.

The research is relevant not just to design of herbicides - some of which are synthetic plant hormones - but also to the genetic modification of plants to suit more extreme growing conditions due to unchecked climate change.

What plant hormones do
Plants can seem pretty defenseless. After all, they can't run from the weed whacker or move to the shade when they're wilting, and they don't have teeth, claws, nervous systems, immune systems or most of the other protective equipment that comes standard with an animal chassis.

But they do make hormones. Or to be precise - because hormones are often defined as chemicals secreted by glands and plants don't have glands - they make chemicals that in very low concentrations dramatically alter their development, growth or metabolism. In the original sense of the word "hormone," which is Greek for impetus, they stir up the plant. In plants as in animals, hormones control growth and development. For example, the auxins, one group of plant hormones, trigger cell division, stem elongation and differentiation into roots, shoots and leaves. The herbicide 2,4-D is a synthetic auxin that kills broadleaf plants, such as dandelions or pigweed, by forcing them to grow to the point of exhaustion.

Asked for his favorite example of a plant hormone, Corey S. Westfall brings up its chemical defense systems. Westfall, a graduate student in the Jez laboratory, who together with Chloe Zubieta, PhD, a staff scientist at the European Synchrotron Radiation Facility did most of the work on the research.

Walking through a public park in St. Louis near WUSTL, Westfall often sees oak leaves with brown spots on them. The spots are cells that have deliberately committed cell suicide to deny water and nutrients to a pathogen that landed in the center of the spot. This form of self-sterilization is triggered by the plant hormone salicylic acid.

Westfall also mentions the jasmonates, which cause plants to secrete compounds such as tannins that discourage herbivores. Tannins are toxic to insects because they bind to salivary proteins and inactivate them. So insects that ingest lots of tannins fail to gain weight and may eventually die.

A little more, a little less
Hormones, in other words, allow plants to respond quickly and sometimes dramatically to developmental cues and environmental stresses. But in order to respond appropriately, plants have to be able to sensitively control the level and activity of the hormone molecules.

The Science paper reveals a key control mechanism: a family of enzymes that attach amino acids to hormone molecules to turn the hormones on or off. Depending on the hormone and the amino acid, the reaction can activate the hormone, put it in storage or mark it for destruction.

For example, in the model plant, thale cress, fewer than 5 percent of the auxins are found in the active free-form. Most are conjugated (attached) to amino acids and inactive, constituting a pool of molecules that can be quickly converted to the active free form.

The attachment of amino acids is catalyzed by a large family of enzymes (proteins) called the GH3s, which probably originated 400 million years ago, before the evolution of land plants. The genes diversified over time: there are only a few in mosses, but 19 in thale cress and more than 100 in total.

"Nature finds things that works and sticks with them," Jez says. The GH3s, he says, are a remarkable example of gene family expansion to suit multiple purposes.

A swiveling hormone modification machine

The first GH3 gene - from soybean - was sequenced in 1984. But gene (or protein) sequences reveal little about what proteins do and how they do it. To understand function, the scientists had to figure out how these enzymes, which start out as long necklaces of amino acids, fold into knobbly globules with protective indentations for chemical reactions.

Unfortunately, protein folding is a notoriously hard problem, one as yet beyond the reach of computer calculations at least as a matter of routine. So most protein structures are still solved by the time-intensive process of crystallizing the protein and bombarding the crystal with X-rays to locate the atoms within it. Both the Jez lab and the Structural Biology Group at European Synchrotron Radiation Facility specialize in protein crystallization.

By good fortune, the scientists were able to freeze the enzymes in two different conformations. This information and that gleaned by mutating the amino acids lining the enzyme's active site let them piece together what the enzymes were doing.

It turned out that the GH3 enzymes, which fold into a shape called a hammer and anvil, cataylze a two-step chemical reaction. In the first step, the enzyme's active site is open allowing ATP (adenosine triphosphate, the cell's energy storage molecule) and the free acid form of the plant hormone to enter.

Once the molecules are bound, the enzyme strips phosphate groups off the ATP molecule to form AMP and sticks the AMP onto an "activated" form of the hormone, a reaction called adenylation.

Adenylation triggers part of the enzyme to rotate over the active site, preparing it to catalyze the second reaction, in which an amino acid is snapped onto the hormone molecule. This is called a transferase reaction.

"After you pop off the two phosphates," Jez says, "the top of the molecule ratchets in and sets up a completely different active site. We were lucky enough to capture that crystallographically because we caught the enzyme in both positions."

The same basic two-step reaction can either activate or inactivate a hormone molecule. Addition of the amino acid isoleucine to a jasmonate, for example, makes the jasmonate hormone bioactive. On the other hand addition of the amino acid aspartate to the auxin known as IAA marks it for destruction.

This is the first time any GH3 structure has been solved.

Plant breeding in a hurry
Understanding the powerful plant hormone systems will give scientists a much faster and more targeted way to breed and domesticate plant species, speed that will be needed to keep up with the rapid shift of plant growing zones.

Plant hormones, like animal hormones, typically affect the transcription of many genes and so have multiple effects, some desirable and others undesirable. But GH3 mutants provide a tantalizing glimpse of what might be possible: some are resistant to bacterial pathogens, others to fungal pathogens and some are exceptionally drought tolerant.

Westfall mentions that in 2003, a scientist at Purdue University figured out that a corn strain that had a short stalk but normal ears and tassels had a mutation that interferes with the flow of the hormone auxin in the plant.

Because the plants are so much smaller, they are relatively drought resistant and might be able to grow in India, where North American corn varieties cannot survive. Similar high-yield dwarf varieties might prevent famine in areas of the world where many people are at risk of starvation.

Related Links
Washington University in St. Louis
Farming Today - Suppliers and Technology




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FARM NEWS
Green grabs: The dark side of the green economy
London, UK (SPX) Jun 21, 2012
'Green grabbing' - the rapidly-growing appropriation of land and resources in the name of 'green ' biofuels, carbon offsetting schemes, conservation efforts and eco-tourism initiatives - is forcing people from their homelands and increasing poverty, new research has found. Ecosystems being 'asset-stripped' for profit is likely to cause dispossession and further poverty amongst already-poor ... read more


FARM NEWS
Anniversary in space - five years of TerraSAR-X

Embedded Educators: Teacher Research Experience in Greenland with Operation IceBridge

Google launches cultural map of Brazil's Amazon tribe

Indra Incorporates Rapideye Satellite Capacity Into Its Earth Observation Service

FARM NEWS
Boeing Completes Fifth GPS IIF Satellite for USAF

GPS being used as weather forecast tool

Apple fends off Android challenge with maps, Siri

Boeing, Raytheon and Harris to Pursue GPS Control Segment Sustainment Contract

FARM NEWS
Scientists develop first satellite deforestation tracker for whole of Latin America

Study Slashes Deforestation Carbon Emission Estimate

Scientists reconstruct pre-Columbian human effects on the Amazon Basin

Palm oil for India 'destroying Indonesian forests'

FARM NEWS
Toward a more economical process for making biodiesel fuel from algae

New 'OPEC' offers sustainable smell of sweet success

Carbon is Key for Getting Algae to Pump Out More Oil

Brazil ethanol plant at risk after protest

FARM NEWS
U.S. approves Nevada solar facility

Dow Corning kicks-off research activities at new solar energy development center

TVUSD Awards SOLON Solar Contract

Solar Garden Developer CEC Partners with REC Solar

FARM NEWS
Study: Bigger wind turbines are greener

US wind industry gains major new supporters for Production Tax Credit campaign

Scotland issues rare wind farm denial

South Korea partners for offshore wind

FARM NEWS
Huge Australian coal mine wins conditional approval

Russia expands presence on Spitsbergen

Australia scraps coal port expansion

Trapped China miner found after 17 days: state media

FARM NEWS
China, Bhutan look to establish formal ties

Ai Weiwei says 'cannot leave China' as bail ends

Two Tibetans set themselves alight in China

China police begin house searches in restive Xinjiang


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement