Incremental discovery may one day lead to photosynthetic breakthrough by Staff Writers Champaign IL (SPX) Jul 03, 2017
Photosynthesis is one of the most complicated and important processes -responsible for kick-starting Earth's food chain. While we have modeled its more-than-100 major steps, scientists are still discovering the purpose of proteins that can be engineered to increase yield, as scientists recently proved in Science. Now researchers have uncovered secrets about another protein, CP12 - the full understanding of which may provide an additional route to boost yields in the future. There are three forms of the protein CP12 that regulate the enzymes GAPDH and PRK. Think of the enzymes as the workhorses and CP12 as the groom holding the reins. CP12 tells them to get to work when there's light and reins them in when it's dark. "CP12 is an important component because it helps plants respond to changing light levels, for example when the plant is shaded by a leaf or cloud," said first author Patricia Lopez, a postdoctoral researcher for Realizing Increased Photosynthetic Efficiency (RIPE) who led this research. "CP12 stops the activity of the enzymes within seconds but without CP12, it will take several minutes to slow the activity, costing the plant precious energy." Published in the Journal of Experimental Botany, Lopez and co-authors found not all CP12 enzymes are created equal. Turns out that CP12-3 is not part of this process - whereas CP12-1 and CP12-2 are in charge and can cover for each other. Get rid of all three, and the plant can't photosynthesize efficiently, resulting in a drastically smaller plant with fewer, smaller seeds. In fact, without CP12 to hold the reins, PRK also disappears. "PRK is a vital workhorse that provides the raw materials for the enzyme Rubisco to turn into carbohydrates - the sugars the plant uses to grow bigger and produce more yield," said lead author Christine Raines, a professor of plant molecular physiology at the University of Essex. Agriculture is approaching the limits of the yield traits that drove the remarkable yield increases over the past century, said RIPE Associate Director Don Ort, USDA/ARS scientist and the Robert Emerson Professor of Plant Biology at the Carl R. Woese Institute for Genomic Biology. "Improving photosynthesis has the promise of being the next frontier to dramatic boost crop yields, and for the first time there is both a molecular understanding of photosynthesis and powerful technological tools to make engineering photosynthesis a realistic and attainable goal." The paper "Arabidopsis CP12 mutants have reduced levels of phosphoribulokinase and impaired function of the Calvin-Benson cycle" is published by the Journal of Experimental Botany (DOI: 10.1093/jxb/erx084). Co-authors include Amani Omar Abuzaid and Tracy Lawson
Irvine CA (SPX) Jul 03, 2017 The world's open grasslands and the beneficial fires that sustain them have shrunk rapidly over the past two decades, thanks to a massive increase in agriculture, according to a new study led by University of California, Irvine and NASA researchers published in Science. Analyzing 1998 to 2015 data from NASA's Terra and Aqua satellites, the international team found that the total area of Ea ... read more Related Links Institute for Genomic Biology at Urbana-Champaign Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |