How plants can grow on salt-affected soils by Staff Writers Wurzburg, Germany (SPX) Jul 19, 2016
It is common knowledge that salt consists of the cation sodium and the anion chloride. However, the substance used to season food has been a cause of great concern to farmers for some time now: In times of climate change, more and more agricultural areas have to be irrigated. This inevitably leads to the increasing salinisation of soils, that is the accumulation of sodium and chloride ions. Plants that grow on such soils usually have a hard time. And that is for a reason: Higher doses of chloride have a toxic effect on plant development. In contrast, they need the anion nitrate as an essential source of nitrogen to build proteins and multiply their DNA. The Wurzburg plant scientists Dietmar Geiger and Rainer Hedrich have recently studied whether and how plants are capable of distinguishing between the nutrient nitrate and the harmful chloride. They present the results of their research in the current issue of the renowned journal Current Biology.
Two channels filter nitrate and chloride In these loading stations, the Wurzburg researchers detected the two anion channels SLAH1 and SLAH3 which are responsible for regulating the passage of nitrate and chloride. In cooperation with the Spanish working group of Dr Colmenero-Flores, the scientists studied genetically modified plants in which SLAH1 or SLAH3 is missing. The sap of these mutants ascending to the shoot through the plant's vascular system only contained half the amount of chloride ions. The nitrate content, however, remained unchanged. Hence, the researchers concluded that both anion channels regulate the entry of chloride into the shoot.
Biophysical studies uncover chloride switch "We found SLAH1 to be incapable of conducting anions in the first place and SLAH3 to mainly conduct nitrate," Professor Rainer Hedrich describes the unexpected result. In the course of further studies, the scientists found the explanation for their strange finding: "The alleged contradiction between the nitrate and chloride contents in the sample plants and in the mutants was resolved when we brought the two anion channels together," Professor Dietmar Geiger explains. It turned out that the two channels form a functional complex. "Each time SLAH1 enters into the complex, the anion filter in SLAH3 will switch from nitrate to chloride and vice versa," Geiger further. Where does this switch play a role? The Spanish colleagues delivered the answer to this question. In order to determine the identity of the chloride-nitrate switch in the plant, they simulated salt-affected soils to the plants. The higher the salt load the roots of the sample plants were exposed to, the more SLAH1 was withdrawn from the anion channel complex. Hedrich: "In this process, the chloride-conducting complex gradually evolves into a nitrate-conducting status." This allows the plant to maintain its intake of nitrate as a vital source of nitrogen without taking damage by the salinisation-related increase in chloride concentration. With their studies on the salt tolerance of plants, the Wurzburg plant scientists Dietmar Geiger and Rainer Hedrich together with their colleagues from Seville and Riyadh have demonstrated a wholly new concept of anion intake regulation in the vascular tissue of the roots. According to the researchers, the discovery of the regulatory anion channel SLAH1 will not least have an impact on optimising the salt tolerance of crops in the future.
Related Links University of Wurzburg Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |