How plant cell compartments 'chat' with each other by Staff Writers Bonn, Germany (SPX) Nov 06, 2015
A team of researchers led by scientists from the University of Bonn has discovered a basis of communication in plant cells: The 'MICU' protein controls the calcium ion concentration in the cellular power stations. Using these chemical signatures, the plants regulate, for instance, the formation of organs and react to water stress. The results may be used in the future to optimize agricultural crops. The reputable journal The Plant Cell reports on the results in its current issue. Plants react to stimuli from their environment by specific responses: If available water becomes limiting, they curb evaporation from their leaves. If a pathogen attacks, they arm themselves with chemical weapons. If a soil fungus wishes to collaborate with a plant root for mutual benefit, both partners discuss their duties. "All of these fine adjustments require a great deal of communication between the individual compartments of the plant cell," says Dr. Markus Schwarzlaender, principle investigator of an Emmy Noether group at the Institute of Crop Science and Resource Conservation at the University of Bonn. When the various components of plant cells communicate with another, they do not use words but calcium ions, i.e. positively charged calcium atoms, instead. "The information is encoded in the fluctuations of the calcium concentration of the various cell compartments," explains Dr. Schwarzlaender. How can a single ion contain and transduce so much information? This is the question scientists have been asking themselves since it became known how various cell compartments 'chat' with each other.
The 'MICU' protein is a central relay station Investigating the cellular power stations (mitochondria) of thale cress (Arabidopsis thaliana), the scientists discovered that the 'MICU' protein fulfills a central role in the control of the calcium ion concentration in the mitochondria. "In mammals, there is a very similar protein which also regulates the concentration of calcium ions," says Dr. Stephan Wagner from the team working with Dr. Schwarzlaender. Like a turbocharger, it prompts the mitochondria of mammals to provide more energy. The scientists speculated that this could be an interesting candidate, but they were taken by surprise when they found the closely related plant-based 'MICU' to be a central relay station in the communication system of Arabidopsis. "The two, similar proteins in animals and plants have evidently arisen from a common ancestor but over the course of millennia, they have developed distinct characteristics," says Dr. Schwarzlaender.
Fluorescing cellular power stations provide information Using the variable fluorescence intensities of the sensor, it was possible to visualize changes in the calcium concentrations of the cellular power stations in the living plants. "We were able to identify a clear influence on the communication of the mitochondria," reports Dr. Wagner. Knockout of the MICU gene resulted, among other consequences, in modified properties of cell respiration. "With our findings, we have established a basis for influencing the calcium signals in specific parts of the plant cell," Dr. Schwarzlaender summarizes. Since Arabidopsis is considered to be an experimental model for plants in general, the findings may be usable in the future for optimizing crops. Looking ahead the researchers note that if, for example, specific plants could be taught to ally themselves with nitrogen-fixing soil bacteria via modified calcium signals, a large amount of fertilizer used in agriculture may be saved. The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis, journal The Plant Cell, DOI: 10.1105/tpc.15.00509
Related Links University of Bonn Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |