Energy News  
FARM NEWS
How algae could save plants from themselves
by Staff Writers
Stanford CA (SPX) May 12, 2016


The algal pyrenoid could be the key to increasing crop yields. A pyrenoid (blue) is seen in a cross-section of an algal cell by false-colored electron microscopy. The pyrenoid sits inside the chloroplast (green), which harvests light energy to drive carbon fixation. Image courtesy Moritz Meyer. For a larger version of this image please go here.

Algae may hold the key to feeding the world's burgeoning population. Don't worry; no one is going to make you eat them. But because they are more efficient than most plants at taking in carbon dioxide from the air, algae could transform agriculture. If their efficiency could be transferred to crops, we could grow more food in less time using less water and less nitrogen fertilizer.

New work from a team led by Carnegie's Martin Jonikas published in Proceedings of the National Academy of Sciences reveals a protein that is necessary for green algae to achieve such remarkable efficiency. The discovery of this protein is an important first step in harnessing the power of green algae for agriculture.

It all starts with the world's most abundant enzyme, Rubisco.

Rubisco "fixes" (or converts) atmospheric carbon dioxide into carbon-based sugars, such as glucose and sucrose, in all photosynthetic organisms on the planet. This reaction is central to life on Earth as we know it, because nearly all the carbon that makes up living organisms was at some point "fixed" from the atmosphere by this enzyme. The rate of this reaction limits the growth rate of many of our crops, and many scientists think that accelerating this reaction would increase crop yields.

The funny thing about Rubisco is that it first evolved in bacteria about 3 billion years ago, a time when the Earth's atmosphere had more abundant carbon dioxide compared to today. As photosynthetic bacteria became more and more populous on ancient Earth, they changed our atmosphere's composition.

"Rubisco functioned very efficiently in the ancient Earth's carbon dioxide-rich environment," Jonikas said. "But it eventually sucked most of the CO2 out of the atmosphere, to the point where CO2 is a trace gas today."

Rubisco is quite literally a victim of its own success. CO2 makes up only about 0.04 percent of molecules in today's atmosphere. In this low concentration of CO2, Rubisco works extremely slowly, which limits the growth rates of many crops.

It turns out that algae have evolved a way to make Rubisco run faster. It's called the pyrenoid. Think of it as a turbocharger for carbon fixation.

The pyrenoid is a tiny compartment inside the cell that is packed with Rubisco and is surrounded by a sheath of starch. Under a microscope, a pyrenoid looks like a spherical bubble inside the cell. Its job is to concentrate carbon dioxide around Rubisco so that Rubisco can run faster.

A pyrenoid provides such a tremendous growth advantage that nearly all algae in the oceans have one. About a third of the planet's carbon fixation is thought to happen in pyrenoids, yet we know almost nothing about how these structures are formed at a molecular level. Such a molecular understanding is needed before researchers can attempt to engineer pyrenoids into crops, which is expected to enhance crop yields by as much as 60 percent.

The research team focused on a fundamental decades-old mystery: what causes Rubisco to cluster at the core of the pyrenoid?

Jonikas and his team discovered that in their model alga Chlamydomonas, this clustering of Rubisco is mediated by a protein they called EPYC1 for Essential Pyrenoid Component 1. They found that EPYC1 bound with Rubisco and packaged it into the matrix of proteins that forms the pyrenoid's interior. What's more, proteins similar to EPYC1 are found in most pyrenoid-containing algae, and are not found in algae that lack these structures.

"A lot of additional work is needed to fully understand EPYC1 and pyrenoids, but our findings are a first step toward engineering algal carbon-capture efficiency into crops," Jonikas said.

The research team also included Carnegie's Luke Mackinder (the lead author), Vivian Chen, Elizabeth Freeman Rosenzweig, Leif Pallesen, Gregory Reeves, and Alan Itakura. The project was a close collaboration with Moritz Meyer, Madeline Mitchell, Oliver Caspari, and Howard Griffiths of the University of Cambridge; Tabea Mettler-Altmann, Frederik Sommer, Timo Muhlhaus, Michael Schroda and Mark Stitt of the Max Planck Institute of Molecular Plant Physiology; Robyn Roth and Ursula Goodenough of Washington University St. Louis; and Stefan Geimer of University of Bayreuth.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Carnegie Institution for Science
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FARM NEWS
Rising Carbon Dioxide Levels Will Help and Hurt Crops
New York NY (SPX) May 08, 2016
Elevated carbon dioxide concentrations in the atmosphere may increase water-use efficiency in crops and considerably mitigate yield losses due to climate change, according to a new NASA study. The results, published in the journal Nature Climate Change on April 18, show some compensation for the adverse impacts of temperature extremes and water scarcity caused by increasing emissions of ca ... read more


FARM NEWS
Now 40, NASA's LAGEOS Set the Bar for Studies of Earth

Underground fungi detected from space

A Cautionary Tale From Planet Earth

Cracking the Code in Satellite Data

FARM NEWS
Satellites 11 and 12 join working Galileo fleet

Operation of 'Indian GPS' will take some more time: ISRO

Air Force awards GPS 3 launch services contract

India gets homegrown satellite navigation system

FARM NEWS
Californian sudden oak death epidemic 'unstoppable'

Amazon rainforest responds quickly to extreme climate events

Old-growth forests may provide buffer against rising temperatures

The unique challenges of conserving forest giants

FARM NEWS
UNT researchers discover potential new paths for plant-based bioproducts

Improving utilization of ammonia and carbon dioxide in microalgal cultivation

Airbus Defence and Space signs contract to build Biomass

Weltec Biopower presents solutions for energy from waste and wastewater

FARM NEWS
Trina Solar Awarded a Silver Rating in EcoVadis CSR Survey

11bn Pound investment in UK solar driving increase in M and A activity

Taiwanese government should provide more support for solar panel industry

SolarReserve and Shenhua plan 1,000MW of Solar Projects in China

FARM NEWS
DNV GL-led project gives green light for wind-powered oil recovery

Report: U.S. wind energy sector booming

El Hierro, the Spanish island vying for 100% clean energy

USGS finds cranes isolated from wind farms

FARM NEWS
Protesters block Australian coal port

Activists dump coal ahead of climate deal signing

Sweden's Vattenfall to sell German coal business

Coal leader Peabody files for bankruptcy

FARM NEWS
China court jails pro-democracy activists: lawyer

China sends more anti-graft inspectors into military

China slams UN criticism of controls on foreign NGOs

China to release last Tiananmen prisoner: activists









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.