How Do Plants Fight Disease?
Riverside CA (SPX) Mar 29, 2011 How exactly bacterial pathogens cause diseases in plants remains a mystery and continues to frustrate scientists working to solve this problem. Now Wenbo Ma, a young plant pathologist at the University of California, Riverside, has performed research on the soybean plant in the lab that makes major inroads into our understanding of plant-pathogen interactions, a rapidly developing area among the plant sciences. Her breakthrough research can help scientists come up with effective strategies to treat crops that have succumbed to disease or, when used as a preventative measure, to greatly reduce their susceptibility to disease. In a paper published in the March issue of the journal Cell Host and Microbe, Ma, an assistant professor of plant pathology and microbiology, and her colleagues show that the bacterial pathogens target isoflavones, a group of compounds in plant cells that defend the plant from bacterial infection, resulting in a reduction in isoflavone production.
An arms race At this point, the pathogen must come up with new strategies by either changing the kind of proteins it injects into the plant, not injecting any proteins at all, or injecting virulence proteins in a way that helps them escape detection by the plant. In this way, the virulence bacterial proteins and the plant host engage in an endless "arms race." "One question we are still trying to answer is how at the molecular level the bacterial virulence proteins promote disease," Ma said. "Some scientists have shown that these proteins block signaling transduction pathways in the plant, which eventually weakens plant immunity. We are introducing a fresh perspective on this topic, namely, that the pathogens evolved strategies to directly attack the production of plant antimicrobial compounds, such as isoflavones, thus compromising the plant's defense mechanism."
Closing the circle "This was an important topic of study about 30 years ago, but then the topic was dropped by researchers and it lost momentum," Ma said. "My lab is now revisiting the problem. Of course, we still have many questions to answer. We need to fully understand how isoflavones function to protect plants so that we can design specific strategies aimed at better protecting the plant."
Looking forward "Pathogens get wise to the disease-fighting strategies we use in agriculture," Ma said. "This is evolution at work. But with fundamental knowledge on how pathogens cause disease we can develop sustainable and applicable strategies to combat disease."
Share This Article With Planet Earth
Related Links University of California - Riverside Farming Today - Suppliers and Technology
China 'to pull dairy licences in safety drive' Shanghai (AFP) March 28, 2011 More than one fifth of China's dairy producers will lose their licences after inspections aimed at preventing a repeat of a huge 2008 milk-contamination scandal, state media reported Monday. China's product safety watchdog, the General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ), has ordered all licensed firms checked in a bid to restore consumer confidence in th ... read more |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |