Grasslands hold potential for increased food production by Staff Writers Vienna, Austria (SPX) Jan 13, 2017
About 40% of natural grasslands worldwide have potential to support increased livestock grazing, according to a new study published in the journal Global Change Biology. This translates to a potential increase of 5% in milk production and 4% in meat production compared to the year 2000 or allow for 2.8 million square kilometers of grassland area to be released from production. In order to feed the world's growing population, global food production will need to increase--but at the same time food production systems have impacts on the environment and climate. Livestock products, including meat and milk, are a major food source for millions of people, and demand for these products is increasing. However, livestock and conversion of land for increased livestock production can lead to increased greenhouse gas emissions or soil erosion through overgrazing. "Grasslands are generally regarded to play an important role in increasing food production to meet future food demand," says Tamara Fetzel, a researcher at the Institute of Social Ecology in Vienna (Alpen Adria University), who led the study as part of her participation in the 2015 Young Scientists Summer Program at IIASA. "But to achieve this target in a sustainable manner, our study suggests that we should focus on making more efficient use of currently available land resources, instead of converting land from other uses." How much livestock grasslands can support depends on a number of variables including climatic, biological, and socio-economic factors such as management, storage systems, and biomass conservation. In the new study, the researchers explored the impact of seasonal patterns of biomass supply on the potential dynamics of grass-based livestock systems, at a global scale. Fetzel and colleagues identified areas where additional biomass could potentially be extracted from the landscape, by comparing the current level of grazing intensity to the maximum levels supported in periods of minimum biomass supply, such as winter or dry periods. The authors also discuss numerous socioeconomic and ecological constraints related to unlocking this potential, such as a lack of infrastructure, market access, knowledge, finance, and labor constraints or the impacts of droughts, and potential negative trade-offs such as loss of biodiversity or soil degradation. "Grassland productivity and intensification potential are some of the most uncertain parameters in global land-use assessments and are often used to estimate ambitious GHG mitigation targets. "Making estimates of potential maximum grazing intensity more realistic by considering seasonal constraints reveals a certain potential to increase grazing intensity in some places, yet shows that the actual grassland area available for other purposes remains limited," says IIASA researcher Petr Havlik, a study coauthor who advised Tamara Fetzel during the YSSP together with Karl-Heinz Erb from the Institute of Social Ecology Vienna. Research paper: Fetzel T, Havlik P, Herrero M, Erb K-H (2016). Seasonality constraints to livestock grazing intensity. Global Change Biology
Related Links International Institute for Applied Systems Analysis Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |