Fighting plant disease at warm temperatures keeps food on the table by Staff Writers East Lansing (SPX) Nov 29, 2017
An issue of global concern is the anticipated shortage of agricultural output to meet the steady rise in human population. Michigan State University scientists understand that overcoming crop loss due to disease and adverse weather will be key in achieving this goal. One of the best historical examples of this is the Irish Potato Famine. Beginning in 1845, Ireland experienced the "perfect storm" of unusually cool, damp weather that provided prime growing conditions for an exotic pathogen that destroyed the potato crop. With their primary food source ravaged by disease, a million Irish people died from the ensuing famine. On the other end of the thermometer, warmer temperatures also can cause extensive crop loss. This critical correlation between changing weather and plants' ability to fend off diseases is featured in the current issue of Nature Communications. In this scenario, Bethany Huot, MSU cell and molecular biology graduate program alumna and the study's lead author, wanted to find out if plants' defense system was compromised or was pathogens' virulence enhanced? The answer: It's both. "Just like people, plants are more likely to get sick when they are growing in stressful environments," said Huot, who published the paper with Sheng Yang He, University Distinguished Professor of plant biology and a Howard Hughes Medical Institute Investigator, and Beronda Montgomery, MSU Foundation Professor. "While individual stresses are damaging to plants, they can have catastrophic effects when combined." The researchers showed on the genetic level how high temperature weakens plant defenses while, separately, strengthening bacterial attacks. When people get a fever, they take a form of salicylic acid, or SA, commonly known as aspirin. Plants don't have to go to a medicine cabinet because they're able to make their own SA. At 73 degrees Fahrenheit, plants can produce plenty of SA to fight off a pathogenic infection. However, when the heat rose above 86 degrees, no SA was produced, leaving plants vulnerable. The authors also found that the pathogen became stronger at the elevated temperature. However, the increased vulnerability of the plants occurred regardless of whether the pathogen was present. "Since the plants could no longer make SA at elevated temperature, we sprayed them with a chemical that acts like SA," Huot said. "This treatment effectively protected the plants from infection; even though the bacteria are more virulent at high temperatures, plants can fight them off if we give them the SA they can no longer make." Even if global climate issues are resolved, local fluctuations in environment will always occur and greatly impact crop growth and yield, Huot added. "Increasing our understanding of how specific environmental factors affect the host and the pathogen as well as their interactions can inform strategies for developing robust crop resistance," she said. "This is important for keeping food on the table."
Davis CA (SPX) Nov 30, 2017 Sequencing the bread wheat genome has long been considered an almost insurmountable task, due to its enormous size and complexity. Yet it is vitally important for the global food supply, providing more than 20 percent of the calories and 23 percent of the protein consumed by humans. Now, an international team of scientists led by researchers at the University of California, Davis, has come ... read more Related Links Michigan State University Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |