Energy News  
FARM NEWS
Controlling plant regeneration systems may drive the future of agriculture
by Staff Writers
Washington DC (SPX) Nov 07, 2016


File image.

The ability to self-repair damaged tissue is one of the key features that define living organisms. Plants in particular are regeneration champions, a quality that has been used for centuries in horticultural techniques such as grafting.

Belgian scientists from VIB and Ghent University have now discovered a key protein complex that controls plant tissue repair. Understanding this mechanism is of great agricultural importance: crops and edible plants might be cultivated more efficiently and made more resistant to parasitic plants. The results are published in the leading journal Nature Plants.

In humans and animals, missing or damaged tissue can be replenished by stem cells. These basic, undifferentiated cells can change into more specific cell types and divide to produce new cells that replace the damaged tissue cells.

Plants are characterized by a similar system, but their regenerative properties are generally much greater. While this asset has been widely used in grafting and plant tissue culture techniques, the mechanism by which cells are triggered to form new cells after injury remained largely elusive.

A team led by professor Lieven De Veylder (VIB-Ghent University) uncovered a novel protein complex controlling tissue repair in plants. One dead plant cell is sufficient to send a signal to the surrounding cells, which activates the protein complex. As a result, these neighboring cells are triggered to divide in such a way that the newly produced cells can replace the dead ones.

Prof. De Veylder (VIB-Ghent University): "There are also a lot of plants and crops that don't have such swift repair systems, such as rice, wheat, corn, bananas and onions. By fully understanding this regeneration system, we might be able to induce it in those kinds of plants, thereby increasing cultivation efficiency. The same goes for grafting, which is employed in the wine and fruit industries, among others. Our findings may help to drastically reduce graft failure rate."

A new ecological strategy to counter parasitic plants is another potential future application of the study's results. These organisms, accounting for approximately 1% of flowering plants, are actually grafts that are able to grow through the mechanism described by the research project. In time, scientists may be able to block the natural grafting of these parasites onto economically important crops.

Prof. De Veylder (VIB-Ghent University): "Our findings illustrate how science can capitalize on the mechanisms of evolution. After all, nature has gradually developed solutions to nearly every biological problem. As scientists, it is our duty to get to the bottom of how these processes function and apply them to the benefit of society. As follow-up steps, we will check whether our results can be extrapolated to crops such as corn, and try to figure out the signals that activate the protein complex."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Flanders Institute for Biotechnology
Farming Today - Suppliers and Technology






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FARM NEWS
Soil could become significant CO2 contributor in near future: Study
Exeter, England (UPI) Nov 3, 2016
Earth's soil currently absorbs and stores more carbon than it emits, but that could soon change, according to a new paper published in the journal Scientific Reports. The planet's top layer could become a significant CO2 contributor in coming decades if current trends in modern land use continue unabated. The only way to maintain soil's role as a carbon sink would be to convert m ... read more


FARM NEWS
NASA and NOAA Celebrate Five-Year Anniversary of Suomi NPP Launch

Satellites help scientists see forests for the trees amid climate change

Hosted Payloads Offers Remedy for Looming Air Force Weather Forecasting Gap

It's what underneath that counts

FARM NEWS
Swarm reveals why satellites lose track

Satellites to spot drones and guide cyclists

No GPS, no problem: Next-generation navigation

Australia's coordinates out by more than 1.5 metres: scientist

FARM NEWS
Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States

New warning over spread of ash dieback

Brazil land grab threatens isolated tribes: activists

FARM NEWS
Bioelectronics at the speed of life

NREL finds bacterium that uses both CO2 and cellulose to make biofuels

State partnerships can promote increased bio-energy production, reduce emissions

Turning biofuel waste into wealth in a single step

FARM NEWS
Tesla expands its portfolio to produce solar roof tiles

CPP, SolarCity Deal Keeps Colton, Calif., Community Affordable and Sustainable

Schools in oil-rich Alberta to get solar panels

Renewable energy on the rise, IEA finds

FARM NEWS
Cuomo announces major progress in offshore wind development

New York set for offshore wind after environmental review

OX2 signs 148 MW wind power deal with Aquila Capital and Google

Prysmian Secures Contract for Offshore Wind Farm Inter-Array Submarine Cables Supply in Belgium

FARM NEWS
Toll in China mine blast rises to 33

China blast kills 15 miners, 18 missing: state media

U.S., Canada aim to cut emissions from coal

Climate: Catholic groups divest from fossil fuels

FARM NEWS
Hong Kong rebel lawmakers in court over oath battle

China priests' fears over Vatican's Beijing olive branch

Pro-independence lawmakers brawl in Hong Kong parliament

Shedding light on China's dark-sky problem









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.