|
. | . |
|
by Staff Writers New Rochelle NY (SPX) Sep 26, 2014
The staggering growth rate of the global population demands innovative and sustainable solutions to increase food production by as much as 70-100% in the next few decades. In light of environmental changes, more drought-tolerant food crops are essential. The latest technological advances and future directions in regulating genes involved in stress tolerance in crops is presented in a Review article in OMICS: A Journal of Integrative Biology, the peer-reviewed interdisciplinary journal published by Mary Ann Liebert, Inc., publishers. The article is available free on the OMICS website. Coauthors Roel Rabara and Paul Rushton, Texas A and M AgriLife Research and Extension Center, Dallas, TX, and Prateek Tripathi, University of Southern California, Los Angeles, focus on the role of transcription factors, described as "master regulators" because they are important components of many genetic regulatory pathways and may be able to control clusters of genes. Drought tolerance is a complex trait that is regulated by multiple genes. In the article "The Potential of Transcription Factor-Based Genetic Engineering in Improving Crop Tolerance to Drought," the authors describe current strategies for using transcription factors to improve drought tolerance and discuss how novel, advanced technologies will help study promising, genetically engineered food crops under field growing conditions. "With limited water supply continuing to constrain food crop production, understanding and improving crop tolerance to drought is a grand challenge for 21st century biology and medicine, and to feed a massive world population," says OMICS Editor-in-Chief Vural Ozdemir, MD, PhD, DABCP, Gaziantep University, Faculty of Communications and Office of the President, Gaziantep, Turkey, and Co-Founder, the Data-Enabled Life Sciences Alliance International (DELSA Global), Seattle, WA. "Transcription factors are veritable candidates for innovation in the next generation of transgenic crops because of their natural role in plant growth and development. Field studies (not only greenhouse measures) will provide additional insights to measure their actual impact and innovation. This state of the art review article offers a timely analysis and topline summary distilled from the past several decades of leading literature."
Related Links Mary Ann Liebert, Inc./Genetic Engineering News Farming Today - Suppliers and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |