Energy News  
FARM NEWS
Biofeedback system designed to control photosynthetic lighting
by Staff Writers
Athens GA (SPX) May 13, 2016


A sweetpotato crop is shown in the biofeedback system. Chlorophyll fluorescence measurements are taken on the plant on the right side to determine how efficiently the plant uses the light provided by LEDs. LED light levels are automatically adjusted to maintain specific levels of physiological activity. Image courtesy courtesy Michael T. Martin. For a larger version of this image please go here.

Controlled environment agriculture is rapidly becoming an important part of the global food system. For example, there has been much interest in the potential of large-scale, indoor agricultural production - often referred to as vertical farming - as a means to produce high quantities of produce. These "plant factories" are expensive to operate, however, in part because of the large power requirements of electric lamps that provide the type and amount of light necessary for photosynthesis in plants.

To find new methods of adapting lighting to plants' requirements in controlled environments such as vertical farms, the researchers developed and tested a biofeedback system that allows for the control of light levels based on the physiological performance of the plants. "Controlling the intensity of light based on plants' ability to use it efficiently may substantially reduce the energy cost of LED lighting, and contribute to making large-scale controlled environment agriculture more profitable," van Iersel said.

The researchers used lettuce, pothos, and sweetpotato plants in experiments with photosynthetic light provided by a 400-Watt LED. Using chlorophyll fluorescence measurements, a datalogger determined how efficiently the plants used the light they received. This data was used to calculate the electron transport rate (ETR), which is an indicator of photosynthesis. The datalogger then altered the duty cycle (the proportion of time that the LEDs are energized during each short on/off cycle) of the LEDs to provide more or less light.

The target ETR was altered in a stepwise pattern over a 15-h period. The biofeedback system was capable of automatically adjusting the light levels to assure that the desired ETR was reached. As the target ETR was increased, light levels increased as well. In addition, conversion of light energy into heat (a common way for plants to deal with excess light) was upregulated, while the light use efficiency decreased.

As the target ETR was decreased during the last 7 hours, conversion of light into heat decreased greatly in lettuce and pothos, with only a small increase in light use efficiency.

"This suggests that the light use efficiency of lettuce and pothos was limited by a process other than conversion into heat, likely light-induced damage to the photosynthetic machinery in the leaves," the authors noted.

"The biofeedback system successfully maintained a wide range of ETR values in different species, while it also is capable of distinguishing between conversion of light into heat and damage to the photosynthetic machinery as causes for decreases in light use efficiency," the authors said. They said the biofeedback system has potential applications in controlled environment agriculture, as well as basic plant physiology studies, where the system can be used to maintain specific levels of physiological activity.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Society for Horticultural Science
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FARM NEWS
How algae could save plants from themselves
Stanford CA (SPX) May 12, 2016
Algae may hold the key to feeding the world's burgeoning population. Don't worry; no one is going to make you eat them. But because they are more efficient than most plants at taking in carbon dioxide from the air, algae could transform agriculture. If their efficiency could be transferred to crops, we could grow more food in less time using less water and less nitrogen fertilizer. New wor ... read more


FARM NEWS
Now 40, NASA's LAGEOS Set the Bar for Studies of Earth

Underground fungi detected from space

A Cautionary Tale From Planet Earth

Cracking the Code in Satellite Data

FARM NEWS
Satellites 11 and 12 join working Galileo fleet

Operation of 'Indian GPS' will take some more time: ISRO

Air Force awards GPS 3 launch services contract

India gets homegrown satellite navigation system

FARM NEWS
US must step-up forest pest prevention

Californian sudden oak death epidemic 'unstoppable'

Amazon rainforest responds quickly to extreme climate events

Old-growth forests may provide buffer against rising temperatures

FARM NEWS
Berkeley Lab scientists brew jet fuel in 1-pot recipe

UNT researchers discover potential new paths for plant-based bioproducts

Improving utilization of ammonia and carbon dioxide in microalgal cultivation

Airbus Defence and Space signs contract to build Biomass

FARM NEWS
Trina Solar Awarded a Silver Rating in EcoVadis CSR Survey

11bn Pound investment in UK solar driving increase in M and A activity

Taiwanese government should provide more support for solar panel industry

SolarReserve and Shenhua plan 1,000MW of Solar Projects in China

FARM NEWS
DNV GL-led project gives green light for wind-powered oil recovery

Report: U.S. wind energy sector booming

El Hierro, the Spanish island vying for 100% clean energy

USGS finds cranes isolated from wind farms

FARM NEWS
Protesters block Australian coal port

Activists dump coal ahead of climate deal signing

Sweden's Vattenfall to sell German coal business

Coal leader Peabody files for bankruptcy

FARM NEWS
'Flesh banquets' of China's Cultural Revolution remain unspoken, 50 years on

China court jails pro-democracy activists: lawyer

China sends more anti-graft inspectors into military

China slams UN criticism of controls on foreign NGOs









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.