Energy News  
FARM NEWS
An eco-friendly approach to reducing toxic arsenic in rice
by Staff Writers
Newark DE (SPX) Jun 10, 2016


The University of Delaware's Angelia Seyfferth is leading a team that is looking at the use of rice husk to reduce arsenic levels in the vital grain. Image courtesy Wenbo Fan and University of Delaware. For a larger version of this image please go here.

A team of researchers at the University of Delaware has found that incorporating rice husk to soil can decrease toxic inorganic arsenic levels in rice grain by 25 to 50 percent without negatively affecting yield.

This research could have important implications for developing countries whose populations rely on rice as a staple of their diets and are in need of cheap, readily available material to improve soil quality and decrease arsenic levels that threaten human health.

The team is led by Angelia Seyfferth, assistant professor in the Department of Plant and Soil Sciences in the College of Agriculture and Natural Resources, who worked with a group of research technicians and undergraduate researchers from diverse areas of study on the project, the results of which were recently published in the Journal of Agricultural and Food Chemistry, which is an American Chemical Society journal.

The work was funded by Seyfferth's National Science Foundation (NSF) Faculty Early Career Development Award, an NSF Division of Biological Infrastructure award, and an award from the UD Research Foundation.

The work builds on previous research led by Seyfferth that looked at soil incubations of rice husk, rice straw and rice ash.

For this study, the researchers grew rice plants in the soil amended with residues and rather than using rice straw - which they found from the previous study has negative impacts on the environment - and they focused on the rice husk, which is silica rich, has less arsenic in the tissues and promotes less arsenic release from not only the tissues but also from the soil compared to the straw.

They also looked at rice ash, which Seyfferth said is basically a charred rice husk material, as an amendment.

"We used those two materials and compared the growth of rice with those materials incorporated into a soil that had background levels of arsenic and relatively low plant-available silicon," said Seyfferth. "The big finding is that when we grow these plants in the fresh husk amended soil, we see a 25-50 percent decrease in the inorganic arsenic in the grains which is the most toxic form of arsenic. So right away, just by putting this material into soil, we can make the plants healthier and alter the toxic form of arsenic that's in the grain which has direct implications for human health."

Arsenic and silicon
Being a silica rich material is important for reducing the amount of arsenic in the rice plant because the mechanism for uptake of arsenite, which is the most dominant form of arsenic in flooded rice paddies, shares a transport pathway with dissolved silicon. This finding was published in a paper that came out in 2008 led by Jian Feng Ma, a Japanese researcher, and Seyfferth said that it confirmed some of her earlier suspicions about arsenic and silicon.

"There were already some clues because arsenic and silicon are very similar in terms of their location on the periodic table, and before that paper came out I had thought about doing some competition experiments between arsenic and silicon rice. When that paper came out, it gave me some confidence that it would be important to investigate," said Seyfferth.

Although she had done some research with synthetic silicon fertilizers that showed promise for decreasing arsenic in the grains, Seyfferth said it wasn't until she went to Cambodia and saw the vastness of rice paddies and how much rice residue is being generated from the production of rice globally that she really wanted to explore using some of those materials as silica sources.

"In Cambodia and in many other rice growing regions, the plants are grown in the soil and then when they harvest, they remove the straw and all of the above ground portion, so they leave the roots in place but most of the silicon is in the straw and also in the husk," said Seyfferth.

When rice comes right off the plant, it is encased in a husk material, and when that gets removed to get to the grain, the leftover husk has a lot of silicon.

"Usually, this material is just put in piles and the engineering industry is always coming up with new and interesting things to do with it. When I was there, seeing these giant piles of husks that were double my height and incredibly vast, I looked at that and I said, 'Wow, look at all that silicon,'" said Seyfferth.

In a natural environment, those silica rich tissues would get re-incorporated but when rice is grown and the tissues are removed and taken off site, that loop is disrupted and the silica loss is exacerbated.

"By incorporating this, we're putting that silica back, which as we show can decrease inorganic arsenic in the grain but it also can provide other nutrients so maybe more phosphorous, more nitrogen as sort of an organic fertilizer without the need for more chemical fertilizer. Then, having more silicon also makes the plants more resistant to other stresses like fungal pathogens," said Seyfferth.

Undergraduate researchers
Seyfferth said that one of the exciting aspects of this project was getting to work with so many undergraduate researchers who were all co-authors on the paper.

"Working with the undergraduate researchers, I think that everybody wins in that scenario. They get research experience which helps prepare them for their next step whether it's graduate school or industry. Our research group gets more help and more hands means light work or that we can do more things and it's just fun to see them get motivated, to get engaged enough to get co-authorship on papers," said Seyfferth.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Delaware
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FARM NEWS
Dartmouth team makes breakthrough toward fish-free aquaculture feed
Hanover NH (SPX) Jun 08, 2016
Dartmouth College scientists have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia, the second most farmed fish in the world and the most widely farmed in the United States. The findings, which appear in the open-access journal PLOS ONE, are a major breakthrough in the quest to develop sustainable, fish-free feeds for aquaculture, the worl ... read more


FARM NEWS
Constraining the composition of Earth's interior with elasticity of minerals

Mapping that sinking feeling

New cheap method of surveying landscapes can capture environmental change

What sustains Earth's magnetic field

FARM NEWS
Russian Glonass-M satellite reaches target orbit

And yet it moves: 14 Galileo satellites now in orbit

Arianespace continues the momentum for Europe's Galileo program on its latest Soyuz flight

China to launch 30 Beidou navigation satellites in next 5 years

FARM NEWS
Yellow Meranti tree in Malaysia is likely the tallest in the tropics

Guatemalan drug lords burning forests to land planes

Beetles, the axe: double trouble for prized Polish forest

Survey describes values, challenges of largest shareholder in US forests: Families

FARM NEWS
World Biofuel Additives Market is Expected to Reach $12,560 Million by 2022

New understanding of plant growth brings promise of tailored products for industry

Chemistry lessons from bacteria may improve biofuel production

Liquid by-products from forest industry find use in wood-plastic composites

FARM NEWS
Sun-powered Solar Impulse 2 aircraft in New York after Statue of Liberty fly-by

Clean Energy Collective Expands Massachusetts Community Solar Portfolio

Perovskite solar cells surpass 20 percent efficiency

Cheap gas, coal won't hobble renewables: energy report

FARM NEWS
Germany slows pace of green energy transition

Ireland aims for greener future

North Sea countries mull wind energy strategy

Industry survey finds U.S. wind power growing

FARM NEWS
U.S. coal production lowest since the 1980s

Coal ash ponds found to leak toxic materials

NGOs slam Japan for investing abroad in carbon-polluting coal

German police arrest 120 in anti-coal demonstrations

FARM NEWS
'Hooligan Sparrow': the film China doesn't want you to see

Hong Kong pro-democracy protester tells court of police 'assault'

Lancome faces growing anger and protests in Hong Kong

Hong Kong student leader Wong acquitted over anti-China protest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.